已知正三角形的三個(gè)頂點(diǎn)都在拋物線上,其中為坐標(biāo)原點(diǎn),設(shè)圓的外接圓(點(diǎn)為圓心)

(I)求圓的方程;

(II)設(shè)圓的方程為,過(guò)圓上任意一點(diǎn)分別作圓的兩條切線,切點(diǎn)為,求的最大值和最小值.

本小題主要考查平面向量,圓與拋物線的方程及幾何性質(zhì)等基礎(chǔ)知識(shí),考查綜合運(yùn)用解析幾何知識(shí)解決問(wèn)題的能力。

(Ⅰ)解法一:設(shè)A、B兩點(diǎn)坐標(biāo)分別為,由題知

解得

所以A(6,2),B(6,-2)或A(6,-2),B(6,2

設(shè)圓心C的坐標(biāo)為(r,0),則r=,因此圓C的方程為

 

解法二:設(shè)A、B兩點(diǎn)坐標(biāo)分別為(x1y1),(x2,y2),由題設(shè)知

又因?yàn)?sub>,可得,即

。

,可知x1x2,故A、B兩點(diǎn)關(guān)于x軸對(duì)稱,所以圓心Cx軸上,

設(shè)C點(diǎn)的坐標(biāo)為(r,0),則A點(diǎn)的坐標(biāo)為(),于是有,解得r=4,所以圓C的方程為

(Ⅱ)解:設(shè)∠ECF=2a,則

在Rt△PCE中,,由圓的幾何性質(zhì)得

 

所以,由此可得

,最小值為-8

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知正三角形的三個(gè)頂點(diǎn)都在拋物線上,其中為坐標(biāo)原點(diǎn),設(shè)圓的外接圓(點(diǎn)為圓心)

(I)求圓的方程;

(II)設(shè)圓的方程為,過(guò)圓上任意一點(diǎn)分別作圓的兩條切線,切點(diǎn)為,求的最大值和最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(07年遼寧卷)(14分)

已知正三角形的三個(gè)頂點(diǎn)都在拋物線上,其中為坐標(biāo)原點(diǎn),設(shè)圓的內(nèi)接圓(點(diǎn)為圓心)

(I)求圓的方程;

(II)設(shè)圓的方程為,過(guò)圓上任意一點(diǎn)分別作圓的兩條切線,切點(diǎn)為,求的最大值和最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2007年普通高等學(xué)校招生全國(guó)統(tǒng)一考試?yán)砜茢?shù)學(xué)卷(遼寧) 題型:解答題

(本小題滿分14分)

已知正三角形的三個(gè)頂點(diǎn)都在拋物線上,其中為坐標(biāo)原點(diǎn),設(shè)圓的內(nèi)接圓(點(diǎn)為圓心)

(I)求圓的方程;

(II)設(shè)圓的方程為,過(guò)圓上任意一點(diǎn)分別作圓的兩條切線,切點(diǎn)為,求的最大值和最小值.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

20.已知正三角形的三個(gè)頂點(diǎn)都在拋物線上,其中為坐標(biāo)原點(diǎn),設(shè)圓是三角形的外接圓(點(diǎn)為圓心)

(I)求圓的方程;

(II)設(shè)圓的方程為,過(guò)圓上任意一點(diǎn)分別作圓的兩條切線,切點(diǎn)為,求的最大值和最小值.

查看答案和解析>>

同步練習(xí)冊(cè)答案