【題目】過拋物線 的焦點(diǎn)的直線與拋物線在第一象限的交點(diǎn)為,與拋物線準(zhǔn)線的交點(diǎn)為 ,點(diǎn)在拋物線準(zhǔn)線上的射影為,若 的面積為 .

( 1 ) 求拋物線的標(biāo)準(zhǔn)方程;

( 2 ) 過焦點(diǎn)的直線與拋物線交于兩點(diǎn),拋物線在點(diǎn)處的切線分別為,且相交于點(diǎn),軸交于點(diǎn),求證: .

【答案】(1).

(2)證明見解析.

【解析】分析:(1)由題意可得,則拋物線的標(biāo)準(zhǔn)方程為.

(2)易知直線的斜率存在,設(shè)直線,設(shè)與拋物線方程聯(lián)立可得,結(jié)合切線方程可得,,,.

詳解:(1)因?yàn)?/span>,所以到準(zhǔn)線的距離即為三角形的中位線的長,所以

根據(jù)拋物線的定義,所以

,

,

解得,所以拋物線的標(biāo)準(zhǔn)方程為.

(2)易知直線的斜率存在,設(shè)直線,設(shè)

聯(lián)立消去,得

,設(shè),

,

,

點(diǎn)坐標(biāo),

,得,

,

所以,即.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知圓上一點(diǎn)關(guān)于直線的對稱點(diǎn)仍在圓上,直線截得圓的弦長為.

(1)求圓的方程;

(2)設(shè)是直線上的動(dòng)點(diǎn),是圓的兩條切線,為切點(diǎn),求四邊形面積的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】央視傳媒為了解央視舉辦的朗讀者節(jié)目的收視時(shí)間情況,隨機(jī)抽取了某市名觀眾進(jìn)行調(diào)查,其中有名男觀眾和名女觀眾,將這名觀眾收視時(shí)間編成如圖所示的莖葉圖(單位:分鐘),收視時(shí)間在分鐘以上(包括分鐘)的稱為朗讀愛好者,收視時(shí)間在分鐘以下(不包括分鐘)的稱為非朗讀愛好者”.規(guī)定只有女朗讀愛好者可以參加央視競選.

(1)若采用分層抽樣的方法從朗讀愛好者非朗讀愛好者中隨機(jī)抽取名,再從這名觀眾中任選名,求至少選到朗讀愛好者的概率;

(2)若從所有的朗讀愛好者中隨機(jī)抽取名,求抽到的名觀眾中能參加央視競選的人數(shù)的分布列及其數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】隨著經(jīng)濟(jì)的發(fā)展,人民的收入水平逐步提高,為了解北京市居民的收入水平,某報(bào)社隨機(jī)調(diào)查了名居民的月收入,得到如下的頻率分布直方圖:

(1)求的值及這名居民的平均月收入(同一組中的數(shù)據(jù)用該組區(qū)間的中點(diǎn)值作代表)

(2)①通過大數(shù)據(jù)分析,北京人的月收入服從正態(tài)分布,其中,,求北京人收入落在的概率;

②將頻率視為概率,若北京某公司一部門有人,記這人中月收入落在的人數(shù)為,求的數(shù)學(xué)期望.

附:若,則

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】(2017湖北部分重點(diǎn)中學(xué)高三聯(lián)考)從編號為001,002,…,500的500個(gè)產(chǎn)品中用系統(tǒng)抽樣的方法抽取一個(gè)樣本,已知樣本編號從小到大依次為007,032,…,則樣本中最大的編號應(yīng)該為(  )

A. 483 B. 482

C. 481 D. 480

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知?jiǎng)狱c(diǎn)與兩個(gè)定點(diǎn),的距離的比為.

(1)求動(dòng)點(diǎn)的軌跡的方程;

(2)過點(diǎn)的直線與曲線交于、兩點(diǎn),求線段長度的最小值;

(3)已知圓的圓心為,且圓軸相切,若圓與曲線有公共點(diǎn),求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某校從高一年級學(xué)生中隨機(jī)抽取40名學(xué)生,將他們的期中考試數(shù)學(xué)成績(滿分100分,成績均為不低于40分的整數(shù))分成六段:,,,,,后得到如圖的頻率分

布直方圖.

(1)求圖中實(shí)數(shù)的值;

(2)若該校高一年級共有學(xué)生1000人,試估計(jì)該校高一年級期中考試數(shù)學(xué)成績不低于60分的人數(shù).

(3)若從樣本中數(shù)學(xué)成績在,兩個(gè)分?jǐn)?shù)段內(nèi)的學(xué)生中隨機(jī)選取2名學(xué)生,試用列舉法求這2名學(xué)生的數(shù)學(xué)成績之差的絕對值大于10的槪率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】2018 年1月16日,由新華網(wǎng)和中國財(cái)經(jīng)領(lǐng)袖聯(lián)盟聯(lián)合主辦的2017中國財(cái)經(jīng)年度人物評選結(jié)果揭曉,某知名網(wǎng)站財(cái)經(jīng)頻道為了解公眾對這些年度人物是否了解,利用網(wǎng)絡(luò)平臺進(jìn)行了調(diào)查,并從參與調(diào)查者中隨機(jī)選出人,把這人分為 兩類(類表示對這些年度人物比較了解,類表示對這些年度人物不太了解),并制成如下表格:

年齡段

歲~

歲~

歲~

歲~

人數(shù)

類所占比例

(1)若按照年齡段進(jìn)行分層抽樣,從這人中選出人進(jìn)行訪談,并從這人中隨機(jī)選出兩名幸運(yùn)者給予獎(jiǎng)勵(lì).求其中一名幸運(yùn)者的年齡在歲~歲之間,另一名幸運(yùn)者的年齡在歲~歲之間的概率;(注:從人中隨機(jī)選出人,共有種不同選法)

(2)如果把年齡在 歲~歲之間的人稱為青少年,年齡在歲~歲之間的人稱為中老年,則能否在犯錯(cuò)誤的概率不超過的前提下認(rèn)為青少年與中老年人在對財(cái)經(jīng)年度人物的了解程度上有差異?

參考數(shù)據(jù):

,其中

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖所示的多面體中, ACBC,四邊形ABED是正方形,平面ABED⊥平面ABC,點(diǎn)F,G,H分別為BD,EC,BE的中點(diǎn),求證:

(1) BC⊥平面ACD

(2)平面HGF∥平面ABC.

查看答案和解析>>

同步練習(xí)冊答案