【題目】
A.16
B.18
C.25
D.
【答案】B
【解析】m≠2時, 拋物線的對稱軸為x=-, 據(jù)題意,當m>2時,-≥2即2m+n≤12, ∵≤≤6, ∴mn≤18, 由2m=n且2m+n=12得m=3, n=6, 當,m<2時, 拋物線開口向下, 根據(jù)題意, -≤即m+2n≤18, ∵≤≤9, ∴mn≤, 由2n=m且m+2n=18得m=9>2, 故應舍去使得mn取得最大值,應有m+2n=18(m<2,n>8), 所以mn=(18-2n)n<(18-2x8)x8=16, 所以最大值為18. 選B
【考點精析】本題主要考查了二次函數(shù)的性質(zhì)的相關知識點,需要掌握當時,拋物線開口向上,函數(shù)在上遞減,在上遞增;當時,拋物線開口向下,函數(shù)在上遞增,在上遞減才能正確解答此題.
科目:高中數(shù)學 來源: 題型:
【題目】已知橢圓C: 的左右焦點與其短軸的一個端點是正三角形的三個頂點,點D 在橢圓C上,直線l:y=kx+m與橢圓C相交于A、P兩點,與x軸、y軸分別相交于點N和M,且PM=MN,點Q是點P關于x軸的對稱點,QM的延長線交橢圓于點B,過點A、B分別作x軸的垂涎,垂足分別為A1、B1
(1)求橢圓C的方程;
(2)是否存在直線l,使得點N平分線段A1B1?若存在,求求出直線l的方程,若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】為了調(diào)查甲、乙兩個網(wǎng)站受歡迎的程度,隨機選取了14天,統(tǒng)計上午8:00—10:00間各自的點擊量,得如下所示的統(tǒng)計圖,根據(jù)統(tǒng)計圖:
(1)甲、乙兩個網(wǎng)站點擊量的極差分別是多少?
(2)甲網(wǎng)站點擊量在[10,60]間的頻率是多少?
(3)甲、乙兩個網(wǎng)站哪個更受歡迎?并說明理由。
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知拋物線C1:x2=4y 的焦點F也是橢圓c2:的一個焦點, C1和C2的公共弦長為
(1)求 C2的方程;
(2)過點F 的直線 l與 C1相交于A與B兩點, 與C2相交于C , D兩點,且與 同向
(ⅰ)若 求直線l的斜率;
(ⅱ)設 C1在點 A處的切線與 x軸的交點為M ,證明:直線l 繞點 F旋轉(zhuǎn)時, MFD總是鈍角三角形。
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】(2015·四川)一輛小客車上有5個座位,其座位號為1,2,3,4,5,乘客P1 , P2 , P3 , P4 , P5的座位號分別為1,2,3,4,5,他們按照座位號順序先后上車,乘客P1因身體原因沒有坐自己號座位,這時司機要求余下的乘客按以下規(guī)則就坐:如果自己的座位空著,就只能坐自己的座位.如果自己的座位已有乘客就坐,就在這5個座位的剩余空位中選擇座位.
(1)(I)若乘客P1坐到了3號座位,其他乘客按規(guī)則就座,則此時共有4種坐法.下表給出其中兩種坐法,請?zhí)钊胗嘞聝煞N坐法(將乘客就坐的座位號填入表中空格處)
乘客 | P1 | P2 | P3 | P4 | P5 |
座位號 | 3 | 2 | 1 | 4 | 5 |
3 | 2 | 4 | 5 | 1 | |
(2)(Ⅱ)若乘客P1坐到了2號座位,其他乘客按規(guī)則就坐,求乘客P1坐到5號座位的概率.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】(2015·四川)某市A,B兩所中學的學生組隊參加辯論賽,A中學推薦3名男生,2名女生,B中學推薦了3名男生,4名女生,兩校推薦的學生一起參加集訓,由于集訓后隊員的水平相當,從參加集訓的男生中隨機抽取3人,女生中隨機抽取3人組成代表隊。
(1)求A中學至少有1名學生入選代表隊的概率.
(2)某場比賽前,從代表隊的6名隊員中隨機抽取4人參賽,設X表示參賽的男生人數(shù),求X得分布列和數(shù)學期望.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】(2015·陜西)如圖1,在直角梯形ABCD中,AD∥BC,BAD=,AB=BC=1,
AD=2, E是AD的中點,0是AC與BE的交點.將△ABE沿BE折起到△A1BE的位置,如圖2.
(1)證明:CD⊥平面A1OC
(2)若平面A1BE⊥平面BCDE, 四棱錐A1-BCDE的體積為36,求a的值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】(2015·江蘇)如圖,在平面直角坐標系xOy中,已知橢圓(a>b>0)的離心率為,且右焦點F到左準線l的距離為3.
(1)求橢圓的標準方程;
(2)過F的直線與橢圓交于A , B兩點,線段AB的垂直平分線分別交直線l和AB于 點P , C , 若PC=2AB , 求直線AB的方程.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】(2015福建)如圖,AB是圓O的直徑,點C是圓O上異于A,B的點,PO垂直于圓O所在的平面,且PO=OB=1.
(1)若D為線段AC的中點,求證AC平面PDO;
(2)求三棱錐P-ABC體積的最大值;
(3)若BC=,點E在線段PB上,求CE+OE的最小值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com