曲線C上任意一點(diǎn)到E(-4,0),F(xiàn)(4,0)的距離的和為12,C與x軸的負(fù)半軸、正半軸依次交于A、B兩點(diǎn),點(diǎn)P在C上,且位于x軸上方,
(1)求曲線C的方程;
(2)求點(diǎn)P的坐標(biāo);
(3)求曲線C的中心為圓心,AB為直徑作圓O,過(guò)點(diǎn)P的直線l截圓O的弦MN長(zhǎng)為,求直線l的方程.
【答案】分析:(1)設(shè)G是曲線C上任意一點(diǎn),依題意,|GE|+|GF|=12.a(chǎn)=6,c=4,,由此可知所求的橢圓方程.
(2)由已知A(-6,0),F(xiàn)(4,0),設(shè)點(diǎn)P的坐標(biāo)為(x,y),則由已知得,由此可推導(dǎo)出點(diǎn)P的坐標(biāo)為;
(3)圓O的圓心為(0,0),半徑為6,其方程為x2+y2=36,直線l的方程為,圓心到l的距離,所以,由此可推導(dǎo)出所求的直線l的方程.
解答:解:(1)設(shè)G是曲線C上任意一點(diǎn),依題意,|GE|+|GF|=12.
所以曲線C是以E、F為焦點(diǎn)的橢圓,且橢圓的長(zhǎng)半袖a=6,半焦距c=4,
所以短半軸,
所以所求的橢圓方程為
(2)由已知A(-6,0),F(xiàn)(4,0),設(shè)點(diǎn)P的坐標(biāo)為(x,y)

由已知得
,
由于y>0,所以只能取,
所以點(diǎn)P的坐標(biāo)為
(3)圓O的圓心為(0,0),半徑為6,其方程為x2+y2=36,
若過(guò)P的直線l與x軸垂直,則直線l的方程為,
這時(shí),圓心到l的距離,
所以,
符合題意;
若過(guò)P的直線l不與x軸垂直,設(shè)其斜率為k,
則直線l的方程為

這時(shí),圓心到l的距離d=,
所以,
化簡(jiǎn)得,
所以直線l的方程為,
綜上,所求的直線l的方程為
點(diǎn)評(píng):本題考查直線和圓錐曲線的位置關(guān)系,解題時(shí)要認(rèn)真審題,仔細(xì)解答.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

曲線C上任意一點(diǎn)到E(-4,0),F(xiàn)(4,0)的距離的和為12,C與x軸的負(fù)半軸、正半軸依次交于A、B兩點(diǎn),點(diǎn)P在C上,且位于x軸上方,
PA
PF
=0

(1)求曲線C的方程;
(2)求點(diǎn)P的坐標(biāo);
(3)求曲線C的中心為圓心,AB為直徑作圓O,過(guò)點(diǎn)P的直線l截圓O的弦MN長(zhǎng)為3
15
,求直線l的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:密云縣一模 題型:解答題

曲線C上任意一點(diǎn)到E(-4,0),F(xiàn)(4,0)的距離的和為12,C與x軸的負(fù)半軸、正半軸依次交于A、B兩點(diǎn),點(diǎn)P在C上,且位于x軸上方,
PA
PF
=0.

(1)求曲線C的方程;
(2)求點(diǎn)P的坐標(biāo);
(3)求曲線C的中心為圓心,AB為直徑作圓O,過(guò)點(diǎn)P的直線l截圓O的弦MN長(zhǎng)為3
15
,求直線l的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2011年廣東省實(shí)驗(yàn)中學(xué)高考數(shù)學(xué)模擬試卷1(理科)(解析版) 題型:解答題

曲線C上任意一點(diǎn)到E(-4,0),F(xiàn)(4,0)的距離的和為12,C與x軸的負(fù)半軸、正半軸依次交于A、B兩點(diǎn),點(diǎn)P在C上,且位于x軸上方,
(1)求曲線C的方程;
(2)求點(diǎn)P的坐標(biāo);
(3)求曲線C的中心為圓心,AB為直徑作圓O,過(guò)點(diǎn)P的直線l截圓O的弦MN長(zhǎng)為,求直線l的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2010年江蘇省無(wú)錫市江陰市成化高級(jí)中學(xué)高考數(shù)學(xué)模擬試卷(18)(解析版) 題型:解答題

曲線C上任意一點(diǎn)到E(-4,0),F(xiàn)(4,0)的距離的和為12,C與x軸的負(fù)半軸、正半軸依次交于A、B兩點(diǎn),點(diǎn)P在C上,且位于x軸上方,
(1)求曲線C的方程;
(2)求點(diǎn)P的坐標(biāo);
(3)求曲線C的中心為圓心,AB為直徑作圓O,過(guò)點(diǎn)P的直線l截圓O的弦MN長(zhǎng)為,求直線l的方程.

查看答案和解析>>

同步練習(xí)冊(cè)答案