在等差數(shù)列{an}中,a1=-2014,其前n項和為Sn,若
S12
12
-
S10
10
=2,則S2014的值為(  )
A、-2011
B、-2012
C、-2013
D、-2014
考點:等差數(shù)列的性質(zhì)
專題:計算題,等差數(shù)列與等比數(shù)列
分析:設等差數(shù)列的公差為d,利用等差數(shù)列的求和公式及
S12
12
-
S10
10
=2可求得公差d,再用求和公式可得答案.
解答: 解:設等差數(shù)列的公差為d,
S12
12
-
S10
10
=2,
12×
a1+a12
2
12
-
10×
a1+a10
2
10
=2,
∴a12-a10=4,
∴2d=4,得d=2,
∵a1=-2014,
∴S2014=-2014×2014+
2014×2013
2
×2=-2014,
故選:D.
點評:本題考查等差數(shù)列的求和公式,屬基礎題,熟記等差數(shù)列的求和公式是解決該題的關鍵.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

下列各函數(shù)中,是偶函數(shù)且在區(qū)間(0,π)上為增函數(shù)的是( 。
A、y=cosx
B、y=sinx
C、y=-cosx
D、y=-cos2x

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知lg(x+y)+lg(2x+3y)-lg3=lg4+lgx+lgy,則
x
y
的值( 。
A、3
B、3或
1
2
C、
1
2
D、3或0

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

如圖,扇形OAB中,OA=OB=1,
AB
=2.在
AB
上隨機取一點C,則∠AOC和∠BOC中至少有一個是鈍角的概率是( 。
A、1-
π
4
B、2-
π
2
C、1-
π
8
D、
π
2
-1

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

下列說法正確的有( 。﹤
①在對分類變量X和Y進行獨立性檢驗時,隨機變量K2的觀測值k越大,則“X與Y相關”可信程度越大;
②進行回歸分析過程中,可以通過對殘差的分析,發(fā)現(xiàn)原始數(shù)據(jù)中的可疑數(shù)據(jù),以便及時糾正;
③線性回歸方程由n組觀察值(xk,yk)(k=1,2,3,…n)計算而得,且其圖象一定經(jīng)過數(shù)據(jù)中心點(
.
x
.
y
);
④若相關指數(shù)R2越大,則殘差平方和越。
A、1B、2C、3D、4

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知集合A={x|x2-11x+10≤0},B={y|y=lgx,x∈A},則A∪B=( 。
A、[0,1]
B、[1,10]
C、{1}
D、[0,10]

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

某產(chǎn)品的組裝工序圖如圖,圖中各字母表示不同車間,箭頭上的數(shù)字表示組裝過程中該工序所需要的時間(小時),不同車間可同時工作,同一車間不能同時做兩種或兩種以上的工序,組裝該產(chǎn)品需要流經(jīng)所有工序,則組裝該產(chǎn)品所需要的最短時間是( 。┬r.
A、11B、13C、15D、17

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設p:“x,y,z中至少有一個等于1”?“(x-1)(y-1)(z-1)=0”;q:“
x-1
+|y-2|+(z-3)2=0”?“(x-1)(y-2)(z-3)=0”,那么p,q的真假是( 。
A、p真q真B、p真q假
C、p假q真D、p假q假

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

在四棱錐S-ABCD中,SA⊥平面ABCD,底面ABCD為直角梯形,AD∥BC,∠ABC=90°,SA=AD=AB=1,BC=
2

(Ⅰ)求異面直線AD與SC所成角的大小;
(Ⅱ)求直線SC與平面SBD所成角的正弦值.

查看答案和解析>>

同步練習冊答案