求函數(shù)在下列定義域內(nèi)的值域。
(1)函數(shù)y=f(x)的值域
(2)(其中)函數(shù)y=f(x)的值域。

(1)(2)

解析試題分析:(1)易知當(dāng)時(shí)函數(shù)是減函數(shù)

所以函數(shù)的值域?yàn)?img src="http://thumb.zyjl.cn/pic5/tikupic/89/2/ws7wk.png" style="vertical-align:middle;" />;         6分
(2)當(dāng)(其中)時(shí),易知上是減函數(shù),在上是增函數(shù)。
的最小值為
,得的最大值為。
所以函數(shù)的值域?yàn)?img src="http://thumb.zyjl.cn/pic5/tikupic/4f/4/e6yrr.png" style="vertical-align:middle;" />。      12分
考點(diǎn):函數(shù)的值域
點(diǎn)評(píng):解決的關(guān)鍵是根據(jù)函數(shù)的定義域和二次函數(shù)的性質(zhì)來(lái)得到值域,屬于基礎(chǔ)題。

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知函數(shù).
(1)求函數(shù)的單調(diào)區(qū)間;   (2)若恒成立,求實(shí)數(shù)k的取值范圍;
(3)證明:  

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知函數(shù),,若函數(shù)處的切線方程為,
(1)求的值;
(2)求函數(shù)的單調(diào)區(qū)間。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知函數(shù)的圖象過(guò)點(diǎn),且點(diǎn)處的切線方程為在
(1)求函數(shù)的解析式;            (2)求函數(shù)的單調(diào)區(qū)間。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

函數(shù) 
(1)畫(huà)出函數(shù)的圖象;
(2)若不等式 恒成立,求實(shí)數(shù)的范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

對(duì)于定義在實(shí)數(shù)集上的兩個(gè)函數(shù),若存在一次函數(shù)使得,對(duì)任意的,都有,則把函數(shù)的圖像叫函數(shù)的“分界線”,F(xiàn)已知為自然對(duì)數(shù)的底數(shù)),
(1)求的遞增區(qū)間;
(2)當(dāng)時(shí),函數(shù)是否存在過(guò)點(diǎn)的“分界線”?若存在,求出函數(shù)的解析式,若不存在,請(qǐng)說(shuō)明理由。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

定義在R上的偶函數(shù)上遞增,函數(shù)f(x)的一個(gè)零點(diǎn)為
求滿足的x的取值集合.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知函數(shù)
(1)當(dāng)時(shí),如果函數(shù)僅有一個(gè)零點(diǎn),求實(shí)數(shù)的取值范圍.
(2)當(dāng)時(shí),比較與1的大小.
(3)求證:

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知函數(shù),
(1)若函數(shù)處的切線方程為,求實(shí)數(shù)的值;
(2)若在其定義域內(nèi)單調(diào)遞增,求的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案