已知三棱錐的三視圖如圖所示,則它的體積為
 

考點(diǎn):由三視圖求面積、體積
專題:空間位置關(guān)系與距離
分析:三視圖復(fù)原的幾何體是放倒的三棱錐,根據(jù)三視圖的數(shù)據(jù),求出幾何體的底面積和高,代入體積公式即可.
解答: 解:三視圖復(fù)原的幾何體是以俯視圖為底面的三棱錐,
底面面積為:
1
2
×
3
×1=
3
2

棱錐的高為:1,
故棱錐體積為:
1
3
×1×
3
2
=
3
6
,
故答案為:
3
6
點(diǎn)評:本題是基礎(chǔ)題,考查幾何體的三視圖,幾何體的體積的求法,準(zhǔn)確判斷幾何體的形狀是解題的關(guān)鍵.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

如圖,在四邊形ABCD中,
AB
=
DC
,已知|
AB
|=8,|
AD
|=5,
AB
AD
的夾角為θ,且cosθ=
11
20
CP
=3
PD
,則
AP
BP
=(  )
A、2B、4C、6D、10

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在△ABC中,AB=4,BC=3,∠ABC=90°,若使△ABC繞直線BC旋轉(zhuǎn)一周,則所形成的幾何體的體積是(  )
A、36πB、28π
C、20πD、16π

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知數(shù)列{an}滿足a1=1,a2=1,an+2=an+1+an,則a6=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=lg
kx-1
x-1
(k∈R).
(1)若y=f(x)是奇函數(shù),求k的值,并求該函數(shù)的定義域;
(2)若函數(shù)y=f(x)在[10,+∞)上是單增函數(shù),求k的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知第一象限的點(diǎn)P(a,b)在直線x+2y-1=0上,則
1
a
+
1
b
的最小值為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)α∈{-1,1,
1
2
,2,3}
,則使函數(shù)y=xα為奇函數(shù)α值的個(gè)數(shù)為(  )
A、1B、2C、3D、4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)函數(shù)f(x)=loga(x+b)(a>0且a≠1)的圖象過點(diǎn)(2,1),其反函數(shù)的圖象過點(diǎn)(2,8),則a+b等于.( 。
A、1B、2C、3D、4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知p:2x2-3x+1≤0,q:x2-(2a+1)x+a(a+1)≤0
(1)若a=
1
2
,且p∧q為真,求實(shí)數(shù)x的取值范圍.
(2)若p是q的充分不必要條件,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案