若△ABC三邊長a,b,c滿足等式(a+b-c)(a+b+c)=ab,則角C的大小為
 
考點:余弦定理
專題:三角函數(shù)的求值
分析:已知的等式左邊利用平方差公式及完全平方公式化簡,整理后得到關(guān)系式,再利用余弦定理表示出cosC,將得出的關(guān)系式代入求出cosC的值,即可確定出C的度數(shù).
解答: 解:∵(a+b-c)(a+b+c)=(a+b)2-c2=a2+b2-c2+2ab=ab,即a2+b2-c2=-ab,
∴cosC=
a2+b2-c2
2ab
=
-ab
2ab
=-
1
2
,
∵C為三角形內(nèi)角,
∴C=
3

故答案為:
3
點評:此題考查了余弦定理,以及特殊角的三角函數(shù)值,熟練掌握余弦定理是解本題的關(guān)鍵.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

如圖,三棱錐P-ABC中,已知平面PAB⊥平面ABC,AC⊥BC,AC=BC=2a,點O,D分別是AB,PB的中點,PO⊥AB,點Q在線段AC上,且AQ=2QC.
(Ⅰ)證明:CD∥平面OPQ
(Ⅱ)若二面角A-PB-C的余弦值的大小為
5
5
,求PA.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)y=f(x)的圖象恒過點(1,1),則函數(shù)y=f(x-4)的圖象恒過點
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

三棱錐的體積為V,過棱錐的高的三等分點的兩個平行于底面的截面將棱錐分成三部分的體積比為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若函數(shù)y=f(x)的圖象經(jīng)過點(1,-2),則函數(shù)y=2f(x)+1的圖象必經(jīng)的點的坐標(biāo)是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=-x3,則下列說話正確的是( 。
A、f(x)為奇函數(shù),且在(0,+∞)上是增函數(shù)
B、f(x)為奇函數(shù),且在(0,+∞)上是減函數(shù)
C、f(x)為偶函數(shù),且在(0,+∞)上是增函數(shù)
D、f(x)為偶函數(shù),且在(0,+∞)上是偶函數(shù)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

半徑為R的球面上有A、B兩點,它們的球面距離是
π
2
R,則線段AB的長為( 。
A、
R
2
B、R
C、
2
2
R
D、
2
R

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=x5+x4+x3+x2+x+1,用秦九昭算法計算f(3)的值時,首先計算的最內(nèi)層括號內(nèi)一次多項式v1的值是( 。
A、1B、2C、3D、4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知點F1、F2為雙曲線C:x2-
y2
b2
=1的左、右焦點,過F2作垂直于x軸的直線,在x軸上方交雙曲線C于點M,∠MF1F2=30°.
(1)求雙曲線C的方程;
(2)過雙曲線C上任意一點P作該雙曲線兩條漸近線的垂線,垂足分別為P1、P2,求
PP1
PP2
的值.

查看答案和解析>>

同步練習(xí)冊答案