已知x∈R+,求函數(shù)y=x(1-x2)的最大值.

答案:
解析:

  解:∵y=x(1-x2),

  ∴y2=x2(1-x2)2=2x2(1-x2)(1-x2

  ∵2x2+(1-x2)+(1-x2)=2,

  ∴y2

  當(dāng)且僅當(dāng)2x2=1-x2=1-x2,即x=時(shí)取“=”號(hào).

  ∴y≤.∴y的最大值為

  思路分析:為使數(shù)的“和”為定值,可以先平方,即y2=x2(1-x2)2=x2(1-x2)(1-x2)=2x2(1-x2)(1-x2.最先求出最值后再開(kāi)方.


練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=
2
3
x3-
1
2
x2-x+1
,x∈R
(1)求函數(shù)f(x)的極大值和極小值;
(2)已知x∈R,求函數(shù)f(sinx)的最大值和最小值.
(3)若函數(shù)g(x)=f(x)+a的圖象與x軸有且只有一個(gè)交點(diǎn),求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(1)已知-1≤x≤2,且x≠0,求lg|x|+lg|7-x|的最大值.
(2)已知x∈R,求函數(shù)y=3(4x+4-x)-10(2x+2-x)的最小值.
(3)已知2x≤256且log2x≥
1
2
,求函數(shù)f(x)=log2
x
2
•log
2
x
2
的最大值和最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2012-2013學(xué)年江蘇省泰州市姜堰市蔣垛中學(xué)高三(下)期初數(shù)學(xué)試卷(解析版) 題型:解答題

已知函數(shù)f(x)=,x∈R
(1)求函數(shù)f(x)的極大值和極小值;
(2)已知x∈R,求函數(shù)f(sinx)的最大值和最小值.
(3)若函數(shù)g(x)=f(x)+a的圖象與x軸有且只有一個(gè)交點(diǎn),求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2012-2013學(xué)年江蘇省泰州市姜堰市高三(下)期初數(shù)學(xué)試卷(解析版) 題型:解答題

已知函數(shù)f(x)=,x∈R
(1)求函數(shù)f(x)的極大值和極小值;
(2)已知x∈R,求函數(shù)f(sinx)的最大值和最小值.
(3)若函數(shù)g(x)=f(x)+a的圖象與x軸有且只有一個(gè)交點(diǎn),求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知函數(shù)f(x)=
2
3
x3-
1
2
x2-x+1
,x∈R
(1)求函數(shù)f(x)的極大值和極小值;
(2)已知x∈R,求函數(shù)f(sinx)的最大值和最小值.
(3)若函數(shù)g(x)=f(x)+a的圖象與x軸有且只有一個(gè)交點(diǎn),求a的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案