(14分)已知數(shù)列是等差數(shù)列,為其前項和,,且,成等比數(shù)列;
(1)求數(shù)列的通項公式;
(2)設(shè),為數(shù)列的前項和,若對一切正整數(shù)恒成立,求實數(shù)的范圍.
(1)an="2" n-1;(2)。
【解析】
試題分析:(Ⅰ)設(shè)的公差為,∴…2分
a1,a3,a13成等比數(shù)列.則25=(5-2d)(5+10 d),解得d =2,d =0(舍). …4分
an = a3+ (n-3)d=5+(n-3)·2="2" n-1.數(shù)列{ an }的通項公式an="2" n-1,n∈N*.………6分
(Ⅱ) ………………7分
則…………………………10分
……………12分
實數(shù)t的取值范圍為: ……………………………14分
考點:等差數(shù)列的性質(zhì);等比數(shù)列的性質(zhì);通項公式的求法;數(shù)列前n項和的求法。
點評:判斷數(shù)列的單調(diào)性,可以用作差法,也可以用做商法。但要注意用做商法的前提條件是數(shù)列的每一項都是正的。
科目:高中數(shù)學 來源:2010-2011年浙江省杭十四中高一第二學期期中考試數(shù)學 題型:填空題
已知數(shù)列是等差數(shù)列,若,
,且,則_________.
查看答案和解析>>
科目:高中數(shù)學 來源:2013-2014學年黑龍江省高三上學期期中考試文科數(shù)學試卷(解析版) 題型:填空題
已知數(shù)列是等差數(shù)列,,則首項 .
查看答案和解析>>
科目:高中數(shù)學 來源:2012-2013學年江西省高二5月第一次周考文科數(shù)學試卷(解析版) 題型:解答題
已知數(shù)列是等差數(shù)列,,數(shù)列的前n項和是,且.
(I)求數(shù)列的通項公式;
(II)求證:數(shù)列是等比數(shù)列;
查看答案和解析>>
科目:高中數(shù)學 來源:2012-2013學年四川省高三下學期三月月考理科數(shù)學試卷(解析版) 題型:填空題
已知數(shù)列是等差數(shù)列,數(shù)列是等比數(shù)列,則的值為 .
查看答案和解析>>
科目:高中數(shù)學 來源:2011-2012學年河南省商丘市高三5月第三次模擬考試理科數(shù)學試卷(解析版) 題型:解答題
已知數(shù)列{}是等差數(shù)列,且滿足:a1+a2+a3=6,a5=5;
數(shù)列{}滿足:-=(n≥2,n∈N﹡),b1=1.
(Ⅰ)求和;
(Ⅱ)記數(shù)列=(n∈N﹡),若{}的前n項和為,求.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com