【題目】已知圓的半徑為2,為平面上一點,,是圓上動點,線段的垂直平分線和直線相交于點

1)以中點為原點,所在直線為軸,建立平面直角坐標系,求點的軌跡方程;

2)設(shè)(1)中點軌跡與直線相交于兩點,求三角形的面積的取值范圍.

【答案】12

【解析】

1)根據(jù)題意建立直角坐標系,由線段垂直平分線的性質(zhì)即可得出,進而得到.由橢圓定義可知,點的軌跡是以,為焦點的橢圓,求出方程即可;

2)聯(lián)立直線與橢圓的方程消去可得出關(guān)于的一元二次方程,結(jié)合韋達定理求出,,進而求出弦長公式的代數(shù)式,然后利用三角形面積公式得到關(guān)于三角形面積的關(guān)于的代數(shù)式,利用整體思想再結(jié)合基本不等式求出最值即可.

解:(1)以所在直線為軸,中點為原點,建立平面直角坐標系,如圖

因為,連,由已知,得,所以

由橢圓定義可知,點的軌跡是以為焦點的橢圓,其方程為

2)由(1)知,點軌跡是橢圓,

交于,

消去

,

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

【題目】以直角坐標系xOy的原點為極坐標系的極點,x軸的正半軸為極軸.已知曲線的極坐標方程為,P上一動點,,Q的軌跡為.

1)求曲線的極坐標方程,并化為直角坐標方程,

2)若點,直線l的參數(shù)方程為t為參數(shù)),直線l與曲線的交點為A,B,當取最小值時,求直線l的普通方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】(本小題滿分12分)

已知函數(shù)是奇函數(shù),的定義域為.當時, .(e為自然對數(shù)的底數(shù)).

(1)若函數(shù)在區(qū)間上存在極值點,求實數(shù)的取值范圍;

(2)如果當x≥1時,不等式恒成立,求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)

1)討論函數(shù)的單調(diào)性;

2)若函數(shù)有兩個極值點,證明:

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,已知拋物線的標準方程為,其中為坐標原點,拋物線的焦點坐標為,為拋物線上任意一點(原點除外),直線過焦點交拋物線于點,直線過點交拋物線于點,連結(jié)并延長交拋物線于點.

1)若弦的長度為8,求的面積;

2)求的最小值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)

(1)若函數(shù)有兩個零點,證明:;

(2)設(shè)函數(shù)的兩個零點為.證明:

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,在直角梯形ABCP中,,,DAP的中點,E,G,F分別為PCCB、PD的中點,將沿CD折起,使得二面角為直二面角.

1)證明:平面EFG;

2)求二面角的大小.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某公司為了鼓勵運動提高所有用戶的身體素質(zhì),特推出一款運動計步數(shù)的軟件,所有用戶都可以通過每天累計的步數(shù)瓜分紅包,大大增加了用戶走步的積極性,所以該軟件深受廣大用戶的歡迎.該公司為了研究“日平均走步數(shù)和性別是否有關(guān)”,統(tǒng)計了20191月份所有用戶的日平均步數(shù),規(guī)定日平均步數(shù)不少于8000的為“運動達人”,步數(shù)在8000以下的為“非運動達人”,采用按性別分層抽樣的方式抽取了100個用戶,得到如下列聯(lián)表:

運動達人

非運動達人

總計

35

60

26

總計

100

1)(i)將列聯(lián)表補充完整;

ii)據(jù)此列聯(lián)表判斷,能否有的把握認為“日平均走步數(shù)和性別是否有關(guān)”?

2)將頻率視作概率,從該公司的所有人“運動達人”中任意抽取3個用戶,求抽取的用戶中女用戶人數(shù)的分布列及期望.

附:

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】《周髀算經(jīng)》中給出了勾股定理的絕妙證明.如圖是趙爽弦圖及注文.弦圖是一個以勾股形之弦為邊的正方形,其面積稱為弦實.圖中包含四個全等的勾股形及一個小正方形,分別涂成朱色及黃色,其面積稱為朱實、黃實.×+(股-勾)2=4×朱實+黃實=弦實,化簡得勾2+2=2.若圖中勾股形的勾股比為,向弦圖內(nèi)隨機拋擲100顆圖釘(大小忽略不計),則落在黃色圖形內(nèi)的圖釘顆數(shù)大約為( )(參考數(shù)據(jù):

A.2B.4C.6D.8

查看答案和解析>>

同步練習冊答案