已知二次函數(shù)f(x)滿足f(0)=1和f(x+1)-f(x-1)=4x+4.
(1)求f(x)的解析式.
(2)求f(x)在區(qū)間[-1,1]上的最大值和最小值.
分析:(1)可設(shè)二次函數(shù)f(x)=ax2+bx+c(a≠0),代入條件,即可求f(x)的解析式.
(2)確定函數(shù)的單調(diào)性,可求f(x)在區(qū)間[-1,1]上的最大值和最小值.
解答:解:(1)設(shè)二次函數(shù)f(x)=ax2+bx+c(a≠0)
∵二次函數(shù)f(x)滿足f(0)=1和f(x+1)-f(x-1)=4x+4,
c=1
a(x+1)2+b(x+1)+c-a(x-1)2-b(x-1)-c=4x+4

∴a=1,b=2,c=1
∴f(x)=x2+2x+1;
(2)f(x)=x2+2x+1=(x+1)2,
∴函數(shù)在區(qū)間[-1,1]上單調(diào)遞增
∴x=-1時,函數(shù)取得最小值0;x=1時,函數(shù)取得最大值4.
點評:本題考查二次函數(shù)解析式的求解,考查待定系數(shù)法的運用,考查函數(shù)的最值,屬于中檔題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知二次函數(shù)f(x)=x2+2(m-2)x+m-m2
(I)若函數(shù)的圖象經(jīng)過原點,且滿足f(2)=0,求實數(shù)m的值.
(Ⅱ)若函數(shù)在區(qū)間[2,+∞)上為增函數(shù),求m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知二次函數(shù)f(x)=ax2+bx+c(a≠0)的圖象過點(0,1),且與x軸有唯一的交點(-1,0).
(Ⅰ)求f(x)的表達(dá)式;
(Ⅱ)設(shè)函數(shù)F(x)=f(x)-kx,x∈[-2,2],記此函數(shù)的最小值為g(k),求g(k)的解析式.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知二次函數(shù)f(x)=x2-16x+q+3.
(1)若函數(shù)在區(qū)間[-1,1]上存在零點,求實數(shù)q的取值范圍;
(2)若記區(qū)間[a,b]的長度為b-a.問:是否存在常數(shù)t(t≥0),當(dāng)x∈[t,10]時,f(x)的值域為區(qū)間D,且D的長度為12-t?請對你所得的結(jié)論給出證明.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2013•廣州一模)已知二次函數(shù)f(x)=x2+ax+m+1,關(guān)于x的不等式f(x)<(2m-1)x+1-m2的解集為(m,m+1),其中m為非零常數(shù).設(shè)g(x)=
f(x)x-1

(1)求a的值;
(2)k(k∈R)如何取值時,函數(shù)φ(x)=g(x)-kln(x-1)存在極值點,并求出極值點;
(3)若m=1,且x>0,求證:[g(x+1)]n-g(xn+1)≥2n-2(n∈N*).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(1)已知二次函數(shù)f(x)的圖象與x軸的兩交點為(2,0),(5,0),且f(0)=10,求f(x)的解析式.
(2)已知二次函數(shù)f(x)的圖象的頂點是(-1,2),且經(jīng)過原點,求f(x)的解析式.

查看答案和解析>>

同步練習(xí)冊答案