已知點P在曲線C1上,點Q在曲線C2:(x-5)2y2=1上,點R在曲線C3:(x+5)2y2=1上,則| PQ |-| PR | 的最大值是
A.6B.8C.10D.12
C
曲線C1-=1的兩個焦點分別是F1(-5,0)與F2(5,0),|PF1|+|PF2|=8
則這兩點正好是兩圓(x+5)2+y2=1和(x-5)2+y2=1的圓心,
兩圓(x+5)2+y2=4和(x-5)2+y2=1的半徑分別是r1=1,r2=1,
∴|PQ|max=|PF1|+1,|PR|min=|PF2|-1,
∴|PQ|-|PR|的最大值=(|PF1|+1)-(|PF2|-1)=8+2=10,
故答案為C
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

”是方程表示雙曲線的(      )
A.充分不必要條件B.必要不充分條件
C.充要條件D.既不充分也不必要條件

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

設(shè)a,b∈R,ab≠0,那么直線ax-y+b=0和曲線bx2+ay2=ab的圖形是(    )

A                    B                   C                  D

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

設(shè)F1、F2分別為橢圓C:=1(a>b>0)的左、右焦點,過F2的直線l與橢圓C相交于A,B兩點,直線l的傾斜角為60°,F(xiàn)1到直線l的距離為2.
(1)求橢圓C的焦距;
(2)如果=2,求橢圓C的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題


.本小題滿分15分)
如圖,已知橢圓E,焦點為、,雙曲線G的頂點是該橢圓的焦點,設(shè)是雙曲線G上異于頂點的任一點,直線、與橢圓的交點分別為A、BCD,已知三角形的周長等于,橢圓四個頂點組成的菱形的面積為.

(1)求橢圓E與雙曲線G的方程;
(2)設(shè)直線的斜率分別為,探求
的關(guān)系;
(3)是否存在常數(shù),使得恒成立?
若存在,試求出的值;若不存在, 請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

“方程表示雙曲線”的一個充分不必要條件是(    )
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

已知點的坐標分別是,直線相交于點,且直線與直線的斜率之差是,則點的軌跡方程是
A.B.
C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

 若雙曲線的漸近線方程式為,則等于  

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

橢圓的一個焦點是,那么  

查看答案和解析>>

同步練習(xí)冊答案