3.設向量$\overrightarrow{a}$=(2,1),$\overrightarrow$=(m,4),且$\overrightarrow{a}$⊥(2$\overrightarrow{a}$-$\overrightarrow$),則$\overrightarrow{a}$在$\overrightarrow$方向上的射影為2.

分析 由向量垂直的條件:數(shù)量積為0,運用向量的數(shù)量積的坐標表示和向量的平方即為模的平方,解方程求得m,再由$\overrightarrow{a}$在$\overrightarrow$方向上的射影為$\frac{\overrightarrow{a}•\overrightarrow}{|\overrightarrow|}$,計算即可得到所求值.

解答 解:向量$\overrightarrow{a}$=(2,1),$\overrightarrow$=(m,4),且$\overrightarrow{a}$⊥(2$\overrightarrow{a}$-$\overrightarrow$),
可得$\overrightarrow{a}$•(2$\overrightarrow{a}$-$\overrightarrow$)=2$\overrightarrow{a}$2-$\overrightarrow{a}$•$\overrightarrow$=0,
即有2×5-(2m+4)=0,
解得m=3.
則$\overrightarrow{a}$在$\overrightarrow$方向上的射影為$\frac{\overrightarrow{a}•\overrightarrow}{|\overrightarrow|}$=$\frac{2×3+1×4}{\sqrt{9+16}}$=2.
故答案為:2.

點評 本題考查向量的投影的求法,注意運用向量的數(shù)量積的坐標表示和性質(zhì):向量的平方即為模的平方,考查方程思想和運算能力,屬于基礎題.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:選擇題

13.直線ax+2y+1=0和直線3x+(a-1)y+1=0平行,則a=( 。
A.-2B.2或-3C.3D.-2或3

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

14.關(guān)于函數(shù)f(x)=lg$\frac{{x}^{2}+1}{|x|}$有下列說法:
(1)函數(shù)y=f(x)的圖象關(guān)于y軸對稱;
(2)函數(shù)f(x)的最小值是lg2;
(3)當x>0時,f(x)是增函數(shù),當x<0時,f(x)是減函數(shù);
(4)f(x)在區(qū)間[-1,0),[1,+∞)上是增函數(shù);
(5)f(x)無最大值,也無最小值.
其中正確的命題序號是(1),(2),(4).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

11.三棱錐A-BCD內(nèi)接于半徑為$\sqrt{5}$的球O中,AB=CD=4,則三棱錐A-BCD的體積的最大值為( 。
A.$\frac{4}{3}$B.$\frac{8}{3}$C.$\frac{16}{3}$D.$\frac{32}{3}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

18.已知函數(shù)f(x)=cos$\frac{x+2φ}{3}$(φ∈[-π,0])的圖象關(guān)于原點對稱,為了得到函數(shù)y=cos($\frac{π}{6}$+$\frac{x}{3}$)的圖象,只需把函數(shù)f(x)的圖象( 。
A.向左平移$\frac{2π}{3}$個單位B.向右平移$\frac{2π}{3}$個單位
C.向左平移2π個單位D.向右平移2π個單位

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

8.2016年皖智教育聯(lián)盟第一次聯(lián)考后,為分析數(shù)學考試成績隨機抽取20名同學的成績統(tǒng)計如下:
分數(shù)段(分)[50,70)[70,90)[90,110)[110,130)[130,150]總計
頻數(shù)2583220           
頻率0.100.250.400.150.101
(Ⅰ)完成上述表格,并根據(jù)上述數(shù)據(jù)估算這20名職工的平均成績;
(Ⅱ)若從這20名同學中任選3人,求至少有1人的成績在90分以上(含90分)的概率;
(Ⅲ)以頻率估計概率,若在全部參考同學(假設樣本容量為無窮大)中作出這樣的測試,且隨機抽取3人,記分數(shù)在110分以上(含110分)的人數(shù)為X,求X的分布列和數(shù)學期望.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

15.已知直線l1的斜率為3,直線12經(jīng)過點(0,5),且l1⊥l2,則直線l2的方程為(  )
A.x-3y+5=0B.x-3y+15=0C.x+3y-5=0D.x+3y-15=0

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

12.橢圓$C:\frac{x^2}{a^2}+\frac{y^2}{b^2}=1(a>b>0)$的左、右焦點分別為F1,F(xiàn)2,M在橢圓上,△MF1F2的周長為$2\sqrt{5}+4$,面積的最大值為2.
(I)求橢圓C的方程;
(II)直線y=kx(k>0)與橢圓C交于A,B,連接AF2,BF2并延長交橢圓C于D,E,連接DE.探索AB與DE的斜率之比是否為定值并說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

13.函數(shù)f(x)=x3-3x2+m在區(qū)間[-1,1]上的最大值是2,則常數(shù)m=(  )
A.-2B.0C.2D.4

查看答案和解析>>

同步練習冊答案