某同學(xué)用“五點法”畫函數(shù)在某一
個周期內(nèi)的圖象時,列表并填入的部分?jǐn)?shù)據(jù)如下表:
(1);(2).
解析試題分析:本題主要考查五點作圖法、三角函數(shù)圖象的平移、三角函數(shù)值域、向量的夾角公式等基礎(chǔ)知識,考查學(xué)生的分析問題解決問題的能力、計算能力,考查學(xué)生的數(shù)形結(jié)合思想.第一問,結(jié)合且,得出和,再解方程求出的值,再結(jié)合三角函數(shù)圖象寫出解析式;第二問,先將圖象向右平移得到解析式,結(jié)合正弦圖象,利用值域確定最高點、最低點的坐標(biāo),從而得到和向量坐標(biāo),利用夾角公式求出,再確定角.
試題解析:(1),,
(2)將的圖像沿軸向右平移個單位得到函數(shù)
由于在上的值域為,
則,故最高點為,最低點為.
則,,則
故.
考點:五點作圖法、三角函數(shù)圖象的平移、三角函數(shù)值域、向量的夾角公式.
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知函數(shù).
(1)求函數(shù)的最小正周期;
(2)求函數(shù)的遞增區(qū)間;
(3)當(dāng)時,求的值域.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
如圖,有一塊正方形區(qū)域ABCD,現(xiàn)在要劃出一個直角三角形AEF區(qū)域進(jìn)行綠化,滿足:EF=1米,設(shè)角AEF=θ,θ,邊界AE,AF,EF的費用為每米1萬元,區(qū)域內(nèi)的費用為每平方米4 萬元.
(1)求總費用y關(guān)于θ的函數(shù).
(2)求最小的總費用和對應(yīng)θ的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
如圖,A,B是單位圓上的兩個質(zhì)點,點B坐標(biāo)為(1,0),∠BOA=60°.質(zhì)點A以1 rad/s的角速度按逆時針方向在單位圓上運動,質(zhì)點B以1 rad/s的角速度按順時針方向在單位圓上運動.
(1)求經(jīng)過1 s 后,∠BOA的弧度;
(2)求質(zhì)點A,B在單位圓上第一次相遇所用的時間.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
是否存在實數(shù)a,使得函數(shù)在閉區(qū)間上的最大值是1?若存在,求出對應(yīng)的a值?若不存在,試說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com