分析 (1)設(shè)出二次函數(shù)解析式,利用待定系數(shù)法求解.
(2)利用二次函數(shù)的對(duì)稱軸,討論即可.
(3)求出f(x),y=2x+2m+1在[-1,3]上的值域,圖象恒在y=2x+2m+1的圖象上方,分離后轉(zhuǎn)化為一個(gè)函數(shù)求最值,即可求解m的范圍.
解答 解:(1)由題意:圖象過(guò)點(diǎn)(0,4),設(shè)二次函數(shù)解析式,f(x)=ax2+bx+4(a≠0)
對(duì)任意x滿足f(2-x)=f(x),則有:對(duì)稱軸x=$\frac{2-x+x}{2}=1$=$-\frac{2a}$
∵最小值為1,∴a>0
當(dāng)x=1時(shí),f(x)取得最小值1;
所以:$\left\{\begin{array}{l}{-b=2a}\\{a+b+4=1}\end{array}\right.$
解得:a=3,b=-6.
所以:f(x)的解析式為f(x)=3x2-6x+4.
(2)由(1)可知f(x)=3x2-6x+4.
對(duì)稱軸x=1,開(kāi)口向上,
f(x)在區(qū)間[3a,a+1]上不單調(diào);
則有:$\left\{\begin{array}{l}{a+1>1}\\{3a<1}\\{3a<a+1}\end{array}\right.$
解得:$0<a<\frac{1}{3}$
所以實(shí)數(shù)a的取值范圍(0,$\frac{1}{3}$).
(3)當(dāng)x在區(qū)間[-1,3]上,y=f(x)的圖象恒在y=2x+2m+1的圖象上方,即3x2-6x+4>2x+2m+1;
化簡(jiǎn)得:$\frac{3}{2}{x}^{2}-4x+\frac{3}{2}>m$.
∵x∈[-1,3],
∴$(\frac{3}{2}{x}^{2}-4x+\frac{3}{2})_{min}=-\frac{7}{6}$
故得實(shí)數(shù)m的取值范圍(-∞,$-\frac{7}{6}$).
點(diǎn)評(píng) 本題考查了二次函數(shù)的解析式求法和最值問(wèn)題.考查了恒成立問(wèn)題轉(zhuǎn)化為不等式求解.屬于中檔題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | {0,1,2,3} | B. | {1,2,4} | C. | {0,4,5} | D. | {5} |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | x=0 | B. | x=$\frac{π}{6}$ | C. | x=-$\frac{π}{12}$ | D. | x=$\frac{π}{4}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | $\frac{1}{3}$ | B. | $\frac{3}{4}$ | C. | $\frac{1}{2}$ | D. | $\frac{2}{3}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com