3.已知集合A={x|x2>x},B={-1,0,$\frac{1}{2}$,2},則A∩B=(  )
A.{0,2}B.{-1,2}C.$\{0,\frac{1}{2}\}$D.$\{\frac{1}{2},2\}$

分析 先化簡集合A,再根據(jù)交集的定義即可.

解答 解:A={x|x2>x}=(-∞,0)∪(1,+∞),
由B={-1,0,$\frac{1}{2}$,2},
則A∩B={-1,2},
故選:B.

點(diǎn)評(píng) 本題考查了集合的交集的運(yùn)算,屬于基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.某幾何體的三視圖如圖所示,則這個(gè)幾何體的體積為( 。
A.$16-\frac{2π}{3}$B.$8-\frac{4π}{3}$C.$16-\frac{4π}{3}$D.$16(1-\frac{π}{3})$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

14.已知直線y=x-1過橢圓C:$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1(a>b>0)$的右焦點(diǎn),且橢圓C的離心率為$\frac{1}{3}$.
(Ⅰ)求橢圓C的標(biāo)準(zhǔn)方程;
(Ⅱ)以橢圓C:$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1(a>b>0)$的短軸為直徑作圓,若點(diǎn)M是第一象限內(nèi)圓周上一點(diǎn),過點(diǎn)M作圓的切線交橢圓C于P,Q兩點(diǎn),橢圓C的右焦點(diǎn)為F2,試判斷△PF2Q的周長是否為定值,若是求出該定值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.已知集合A={1,2,3,4},B={y|y=2x-1,x∈A},則A∩B=( 。
A.{1,2}B.{1,2,4}C.{2,4}D.{2,3,4}

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.在[0,2π]上隨機(jī)取一個(gè)數(shù)x,則事件“$cos(x+\frac{π}{3})+\sqrt{3}sin(x+\frac{π}{3})≥1$”發(fā)生的概率為(  )
A.$\frac{1}{2}$B.$\frac{1}{3}$C.$\frac{1}{6}$D.$\frac{2}{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.在復(fù)平面內(nèi),復(fù)數(shù)z對(duì)應(yīng)的點(diǎn)是Z(1,-2),則復(fù)數(shù)z的共軛復(fù)數(shù)$\overline z$=(  )
A.1+2iB.1-2iC.2+iD.2-i

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

15.在平面直角坐標(biāo)系xOy中,拋物線C的頂點(diǎn)是原點(diǎn),以x軸為對(duì)稱軸,且經(jīng)過點(diǎn)P(1,2).
(Ⅰ)求拋物線C的方程;
(Ⅱ)設(shè)點(diǎn)A,B在拋物線C上,直線PA,PB分別與y軸交于點(diǎn)M,N,|PM|=|PN|.求直線AB的斜率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.為了解600名學(xué)生的視力情況,采用系統(tǒng)抽樣的方法,從中抽取容量為20的樣本,則需要分成幾個(gè)小組進(jìn)行抽。ā 。
A.20B.30C.40D.50

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

15.已知實(shí)數(shù)x,y滿足$\left\{\begin{array}{l}\frac{1}{2}x-y≤0\\ x-7≤0\\ 2x-y-4≥0\end{array}\right.$,則z=2x-3y的最小值為-16.

查看答案和解析>>

同步練習(xí)冊(cè)答案