12.下列關(guān)于程序框圖的描述
①對(duì)于一個(gè)算法來說程序框圖是唯一的;
②任何一個(gè)框圖都必須有起止框;
③程序框圖只有一個(gè)入口,也只有一個(gè)出口;
④輸出框一定要在終止框前.
其中正確的有( 。
A.1個(gè)B.2個(gè)C.3個(gè)D.4個(gè)

分析 逐一分析各個(gè)選項(xiàng):①對(duì)于一個(gè)算法來說,程序框圖是不唯一的,可以有幾種形式;②選項(xiàng),任何一個(gè)框圖都必須有起止框;③選項(xiàng),程序框圖只有一個(gè)入口,但可以有多個(gè)出口;④選項(xiàng),輸出框一定要在終止框前,從而得解.

解答 解:①不正確,對(duì)于一個(gè)算法來說,程序框圖是不唯一的,可以有幾種形式;
②正確,任何一個(gè)框圖都必須有起止框;
③不正確,程序框圖只有一個(gè)入口,但可以有多個(gè)出口.
④正確,輸出框一定要在終止框前.
故選:B.

點(diǎn)評(píng) 本題考查程序框圖,解答本題的關(guān)鍵是理解并掌握程序框圖的特征,屬于基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

2.設(shè)f1(x)=cosx,定義fn+1(x)是fn(x)的導(dǎo)數(shù),即fn+1(x)=fn′(x),n∈N*,若△ABC的內(nèi)角A滿足f1(A)+f2(A)+…+f2014(A)=0,則sinA=$\frac{\sqrt{2}}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.$\frac{{{{sin}^2}50°}}{1+sin10°}$=( 。
A.-1B.1C.$-\frac{1}{2}$D.$\frac{1}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.已知雙曲線$\frac{x^2}{a^2}-\frac{y^2}{16}$=1(a>0)的一條漸近線方程為y=$\frac{4}{3}$x,則該雙曲線的離心率為(  )
A.$\frac{4}{3}$B.$\frac{5}{3}$C.$\frac{5}{4}$D.$\frac{{\sqrt{7}}}{4}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

7.某大學(xué)新聞系有男生45名,女生15名,按照分層抽樣的方法組建了一個(gè)4人的青奧會(huì)采訪小組.
(1)求某學(xué)生被抽到的概率及采訪小組中男、女生的人數(shù);
(2)經(jīng)過半個(gè)月的實(shí)地采訪,這個(gè)采訪小組決定選出2名學(xué)生做后期整理編輯,方法是先從小組里選出1名學(xué)生對(duì)信息分類,該學(xué)生整理結(jié)束,再從小組內(nèi)剩下的學(xué)生中選1名做后期剪輯,求選出的2名學(xué)生中恰有1名女生的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

17.已知點(diǎn)P0(x0,y0)和直線l:Ax+By+C=0,寫出求點(diǎn)P0到直線l的距離d的算法并畫出程序框圖.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.不等式logax>sin2x(a>0且a≠1)對(duì)任意$x∈(0,\frac{π}{4})$都成立,則a的取值范圍為(  )
A.$(0,\frac{π}{4})$B.$[\frac{π}{4},1)$C.$(\frac{π}{4},1)∪(1,\frac{π}{2})$D.(0,1)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.如圖,直三棱柱ABC-A1B1C1的六個(gè)頂點(diǎn)都在半徑為2的半球面上,AB=AC,側(cè)面BCC1B1是半球底面圓的內(nèi)接正方形,則側(cè)面ABB1A1的面積為( 。
A.$4\sqrt{2}$B.$2\sqrt{2}$C.2D.$\sqrt{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

2.已知空間四面體ABCD中,AC=AD=BC=BD=2,且四面體ABCD的外接球的表面積為7π,如果AB=CD=a,則a=$\sqrt{6}$.

查看答案和解析>>

同步練習(xí)冊(cè)答案