【題目】如圖,在三棱錐P-ABC中,PA⊥AB,PA⊥BC,AB⊥BC,PA=AB=BC=2,D為線段AC的中點(diǎn),E為線段PC上一點(diǎn).
(1)求證:PA⊥BD;
(2)求證:平面BDE⊥平面PAC;
(3)當(dāng)PA∥平面BDE時(shí),求三棱錐E-BCD的體積.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某保險(xiǎn)公司針對企業(yè)職工推出一款意外險(xiǎn)產(chǎn)品,每年每人只要交少量保費(fèi),發(fā)生意外后可一次性獲賠50萬元.保險(xiǎn)公司把職工從事的所有崗位共分為、、三類工種,根據(jù)歷史數(shù)據(jù)統(tǒng)計(jì)出三類工種的每賠付頻率如下表(并以此估計(jì)賠付概率).
(Ⅰ)根據(jù)規(guī)定,該產(chǎn)品各工種保單的期望利潤都不得超過保費(fèi)的20%,試分別確定各類工種每張保單保費(fèi)的上限;
(Ⅱ)某企業(yè)共有職工20000人,從事三類工種的人數(shù)分布比例如圖,老板準(zhǔn)備為全體職工每人購買一份此種保險(xiǎn),并以(Ⅰ)中計(jì)算的各類保險(xiǎn)上限購買,試估計(jì)保險(xiǎn)公司在這宗交易中的期望利潤.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】春節(jié)來臨,有農(nóng)民工兄弟、、、四人各自通過互聯(lián)網(wǎng)訂購回家過年的火車票,若訂票成功即可獲得火車票,即他們獲得火車票與否互不影響.若、、、獲得火車票的概率分別是,其中,又成等比數(shù)列,且、兩人恰好有一人獲得火車票的概率是.
(1)求的值;
(2)若、是一家人且兩人都獲得火車票才一起回家,否則兩人都不回家.設(shè)表示、、、能夠回家過年的人數(shù),求的分布列和期望.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】下表提供了某廠節(jié)能降耗技術(shù)改進(jìn)后生產(chǎn)甲產(chǎn)品過程中記錄的產(chǎn)量x(噸)與相應(yīng)的生產(chǎn)能耗y(噸標(biāo)準(zhǔn)煤)的幾組對照數(shù)據(jù).
x | 3 | 4 | 5 | 6 |
y | 2.5 | 3 | 4 | 4.5 |
(1)請根據(jù)上表提供的數(shù)據(jù),用最小二乘法求出y關(guān)于x的回歸方程 = x+ ;
(2)已知該廠技改前100噸甲產(chǎn)品的生產(chǎn)能耗為90噸標(biāo)準(zhǔn)煤.試根據(jù)(1)求出的回歸方程,預(yù)測生產(chǎn)100噸甲產(chǎn)品的生產(chǎn)能耗比技改前降低多少噸標(biāo)準(zhǔn)煤? (參考數(shù)值:3×2.5+4×3+5×4+6×4.5=66.5)計(jì)算回歸系數(shù) , .公式為 .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓的左、右焦點(diǎn)分別為,上、下頂點(diǎn)分別是,點(diǎn)是的中點(diǎn),若,且.
(1)求橢圓的標(biāo)準(zhǔn)方程;
(2)過的直線與橢圓交于不同的兩點(diǎn),求的面積的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】選修4-4:坐標(biāo)系與參數(shù)方程
在極坐標(biāo)系中,曲線的極坐標(biāo)方程是,以極點(diǎn)為原點(diǎn),極軸為軸正半軸(兩坐標(biāo)系取相同的單位長度)的直角坐標(biāo)系中,曲線的參數(shù)方程為:(為參數(shù)).
(1)求曲線的直角坐標(biāo)方程與曲線的普通方程;
(2)若用代換曲線的普通方程中的得到曲線的方程,若分別是曲線和曲線上的動(dòng)點(diǎn),求的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】△ABC的內(nèi)角A、B、C所對的邊分別為a,b,c. (Ⅰ)若a,b,c成等差數(shù)列,證明:sinA+sinC=2sin(A+C);
(Ⅱ)若a,b,c成等比數(shù)列,且c=2a,求cosB的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某市為了考核甲,乙兩部門的工作情況,隨機(jī)訪問了50位市民,根據(jù)這50位市民對這兩部門的評分(評分越高表明市民的評價(jià)越高),繪制莖葉圖如下:
(1)分別估計(jì)該市的市民對甲,乙兩部門評分的中位數(shù);
(2)分別估計(jì)該市的市民對甲,乙兩部門的評分高于90的概率;
(3)根據(jù)莖葉圖分析該市的市民對甲,乙兩部門的評價(jià).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)函數(shù),其中、.
(1)若曲線在點(diǎn)處的切線方程為,求,的值;
(2)當(dāng)時(shí),恒成立,求滿足條件的最小整數(shù)的值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com