【題目】如圖,某海面上有三個(gè)小島(面積大小忽略不計(jì)),島在島的北偏東方向距千米處,島在島的正東方向距20千米處.為坐標(biāo)原點(diǎn),的正東方向?yàn)?/span>軸的正方向,1千米為單位長度,建立平面直角坐標(biāo)系.經(jīng)過、、三點(diǎn).

1)求圓的方程;

2)若圓區(qū)域內(nèi)有未知暗礁,現(xiàn)有一船D島的南偏西30°方向距40千米處,正沿著北偏東行駛,若不改變方向,試問該船有沒有觸礁的危險(xiǎn)?

【答案】12)該船有觸礁的危險(xiǎn)

【解析】

1)由圓過點(diǎn)、、,設(shè)圓的方程為,

再將點(diǎn)、、的坐標(biāo)代入運(yùn)算即可得解;

2)由題意可得該船航行方向?yàn)橹本,再結(jié)合點(diǎn)到直線的距離公式可得圓心到直線的距離,得解.

解:(1)如圖所示,、

設(shè)過、、三點(diǎn)的圓的方程為,

得:,

解得,

故所以圓的方程為,

圓心為,半徑,

2)該船初始位置為點(diǎn),則,

且該船航線所在直線的斜率為1,

故該船航行方向?yàn)橹本,

由于圓心到直線的距離,

故該船有觸礁的危險(xiǎn).

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)

(1)若,求證:

(2)若,恒有,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系中,動(dòng)點(diǎn)到定點(diǎn)的距離與到定直線的距離的比為,動(dòng)點(diǎn)的軌跡記為.

1)求軌跡的方程;

2)若點(diǎn)在軌跡上運(yùn)動(dòng),點(diǎn)在圓上運(yùn)動(dòng),且總有

的取值范圍;

3)過點(diǎn)的動(dòng)直線交軌跡兩點(diǎn),試問:在此坐標(biāo)平面上是否存在一個(gè)定點(diǎn),使得無論如何轉(zhuǎn)動(dòng),以為直徑的圓恒過點(diǎn)?若存在,求出點(diǎn)的坐標(biāo).若不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某大型商場去年國慶期間累計(jì)生成萬張購物單,從中隨機(jī)抽出張,對(duì)每單消費(fèi)金額進(jìn)行統(tǒng)計(jì)得到下表:

消費(fèi)金額(單位:元)

購物單張數(shù)

25

25

30

10

10

由于工作人員失誤,后兩欄數(shù)據(jù)已無法辨識(shí),但當(dāng)時(shí)記錄表明,根據(jù)由以上數(shù)據(jù)繪制成的頻率分布直方圖所估計(jì)出的每單消費(fèi)額的中位數(shù)與平均數(shù)恰好相等.用頻率估計(jì)概率,完成下列問題:

(1)估計(jì)去年國慶期間該商場累計(jì)生成的購物單中,單筆消費(fèi)額超過元的概率;

(2)為鼓勵(lì)顧客消費(fèi),該商場打算在今年國慶期間進(jìn)行促銷活動(dòng),凡單筆消費(fèi)超過元者,可抽獎(jiǎng)一次,中一等獎(jiǎng)、二等獎(jiǎng)、三等獎(jiǎng)的顧客可以分別獲得價(jià)值元、元、元的獎(jiǎng)品.已知中獎(jiǎng)率為,且一等獎(jiǎng)、二等獎(jiǎng)、三等獎(jiǎng)的中獎(jiǎng)率依次構(gòu)成等比數(shù)列,其中一等獎(jiǎng)的中獎(jiǎng)率為.若今年國慶期間該商場的購物單數(shù)量比去年同期增長,式預(yù)測商場今年國慶期間采辦獎(jiǎng)品的開銷.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系中,以原點(diǎn)為極點(diǎn),軸的非負(fù)半軸為極軸建立極坐標(biāo)系.已知曲線的極坐標(biāo)方程為為曲線上的動(dòng)點(diǎn),軸、軸的正半軸分別交于,兩點(diǎn).

(1)求線段中點(diǎn)的軌跡的參數(shù)方程;

(2)若是(1)中點(diǎn)的軌跡上的動(dòng)點(diǎn),求面積的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】關(guān)于圓周率,數(shù)學(xué)發(fā)展史上出現(xiàn)過多很有創(chuàng)意的求法,如著名的蒲豐試驗(yàn),受其啟發(fā),我們也可以通過設(shè)計(jì)下面的試驗(yàn)來估計(jì)的值,試驗(yàn)步驟如下:①先請(qǐng)高二年級(jí)名同學(xué)每人在小卡片上隨機(jī)寫下一個(gè)實(shí)數(shù)對(duì);②若卡片上的,能與構(gòu)成銳角三角形,則將此卡片上交;③統(tǒng)計(jì)上交的卡片數(shù),記為;④根據(jù)統(tǒng)計(jì)數(shù),估計(jì)的值.那么可以估計(jì)的值約為( )

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某公交公司為了方便市民出行,科學(xué)規(guī)劃車輛投放,在一個(gè)人員密集流動(dòng)地段增設(shè)一個(gè)起點(diǎn)站,為了研究車輛發(fā)車間隔時(shí)間x與乘客等候人數(shù)y之間的關(guān)系,經(jīng)過調(diào)查得到如下數(shù)據(jù):

間隔時(shí)間x/

10

11

12

13

14

15

等候人數(shù)y/

23

25

26

29

28

31

調(diào)查小組先從這6組數(shù)據(jù)中選取4組數(shù)據(jù)求線性回歸方程,再用剩下的2組數(shù)據(jù)進(jìn)行檢驗(yàn).檢驗(yàn)方法如下:先用求得的線性回歸方程計(jì)算間隔時(shí)間對(duì)應(yīng)的等候人數(shù),再求與實(shí)際等候人數(shù)y的差,若差值的絕對(duì)值都不超過1,則稱所求方程是“恰當(dāng)回歸方程”.

1)從這6組數(shù)據(jù)中隨機(jī)選取4組數(shù)據(jù),求剩下的2組數(shù)據(jù)的間隔時(shí)間相鄰的概率;

2)若選取的是中間4組數(shù)據(jù),求y關(guān)于x的線性回歸方程,并判斷此方程是否是“恰當(dāng)回歸方程”.

附:對(duì)于一組數(shù)據(jù),其回歸直線的斜率和截距的最小二乘估計(jì)分別為:,.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】橢圓的離心率為,短軸端點(diǎn)與兩焦點(diǎn)圍成的三角形面積為.

(1)求橢圓的方程;

(2)設(shè)直線與橢圓交于兩點(diǎn),且過點(diǎn)為坐標(biāo)原點(diǎn),當(dāng)△為直角三角形,求直線的斜率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知?jiǎng)狱c(diǎn)滿足,記M的軌跡為曲線C,直線l)交曲線CP,Q兩點(diǎn),點(diǎn)P在第一象限,軸,垂足為E,連接QE并延長交曲線C于點(diǎn)G.

(1)求曲線C的方程,并說明曲線C是什么曲線;

(2)若,求的面積.

(3)求面積的最大值.

查看答案和解析>>

同步練習(xí)冊答案