設m,n表示不同的直線,α,β表示不同的平面,則下列命題中不正確的是( 。
A、m⊥α,n⊥α,則m∥n
B、m⊥α,α∥β,則m⊥β
C、m∥n,m⊥α,則n⊥α
D、m∥α,α∩β=n,則m∥n
考點:空間中直線與平面之間的位置關系
專題:空間位置關系與距離
分析:利用線面垂直、線面平行以及面面平行的性質定理和判定定理對選項分別分析選擇.
解答: 解:對于A,根據(jù)線面垂直的性質可以判斷正確;
對于B,根據(jù)線面垂直的性質以及面面平行的性質可得結論正確;
對于C,根據(jù)線線平行的性質以及線面垂直的性質可以判斷結論正確;
故選:D.
點評:本題考查了線面垂直、線面平行以及面面平行的性質定理和判定定理的運用;根據(jù)是熟練掌握、靈活運用定理.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

已知C為線段AB的中點,P為直線AB外一點,滿足|
PA
|=|
PB
|=3,|
PA
-
PB
|=4,
PI
IC
BI
=m(
AC
|
AC
|
+
AP
|
AP
|
)+
BA
,m>0,則λ=
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

求下列各式的值
(1)sin15°sin30°sin75°;
(2)cos36°cos72°;
(3)tan20°+tan40°+
3
tan200tan400
;
(4)(tan5°-tan85°)•
cos700
1+sin700

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

在甲、乙兩個盒子中分別裝有編號為1,2,3,4的四個形狀相同的小球,現(xiàn)從甲、乙兩個盒子中各取出2個小球,每個小球被取出的可能性相等.
(1)求從甲盒中取出的兩個球上的編號不都是奇數(shù)的概率;
(2)求從甲盒取出的小球上編號之和與從乙盒中取出的小球上編號之和相等的概率.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

某校開展“節(jié)能減排,保護環(huán)境,從我做起!”的活動,該校高二某班同學利用假期在南城、北城兩個小區(qū)進行了逐戶的關于“生活習慣是否符合低碳排放標準”的調查.生活習慣符合低碳觀念的稱為“低碳家庭”,否則稱為“非低碳家庭”.經統(tǒng)計,這兩類家庭占各自小區(qū)總戶數(shù)的比例P數(shù)據(jù)如下:
南城小區(qū)低碳家庭非低碳家庭北城小區(qū)低碳家庭非低碳家庭
比例P
2
3
1
3
比例P
4
5
1
5
如果在南城、北城兩個小區(qū)內各隨機選擇2個家庭,求這4個家庭中恰好有兩個家庭是“低碳家庭”的概率.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知O是△ABC所在平面上一點,若(
OA
+
OB
)•
AB
=(
OB
+
OC
)•
BC
=(
OC
+
OA
)•
CA
=0,則O點是三角形的
 
心.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

記曲線y=
2x-x2
與x軸所圍成的區(qū)域為D,若直線y=ax-a把D的面積分為1:2的兩部分,則a的值為(  )
A、±
3
B、
3
C、±
3
3
D、
3
3

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

如圖,已知正三角形ABC的邊長為1,設
AB
=
a
,
AC
=
b

(Ⅰ)若D是AB的中點,用
a
,
b
表示向量
CD

(Ⅱ)求2
a
+
b
與-3
a
+2
b
的夾角.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

求值域:
(1)y=
2x
x2+3x+1
(x∈R且x2+3x+1≠0)
(2)y=
2x
x2+3x+1
(x∈[-
1
2
,
4
2
),且x2+3x+1≠0)

查看答案和解析>>

同步練習冊答案