A. | $-\frac{15}{4}$ | B. | $-\frac{7}{4}$ | C. | $\frac{7}{4}$ | D. | $\frac{15}{4}$ |
分析 先將一個向量用其余兩個向量表示出來,然后借助于平方使其出現(xiàn)向量模的平方,則才好用上外接圓半徑,然后進一步分析結(jié)論,容易化簡出要求的結(jié)果.
解答 解:$\overrightarrow{OA}+2\overrightarrow{OB}+4\overrightarrow{OC}=0$,
∴$\overrightarrow{OA}$+2$\overrightarrow{OB}$=-4$\overrightarrow{OC}$,
∴($\overrightarrow{OA}$+2$\overrightarrow{OB}$)2=(-4$\overrightarrow{OC}$)2,
∴|$\overrightarrow{OA}$|2+4|$\overrightarrow{OB}$|2+4$\overrightarrow{OA}•\overrightarrow{OB}$=16|$\overrightarrow{OC}$|2,
∵△ABC的外接圓半徑為1,圓心為O,
∴|$\overrightarrow{OA}$|=|$\overrightarrow{OB}$|=|$\overrightarrow{OC}$|=1,
∴1+4+4$\overrightarrow{OA}•\overrightarrow{OB}$=16,
∴$\overrightarrow{OA}•\overrightarrow{OB}$=$\frac{11}{4}$
∴$\overrightarrow{AB}•\;\overrightarrow{OA}$=($\overrightarrow{OB}$-$\overrightarrow{OA}$)•$\overrightarrow{OA}$=$\overrightarrow{OA}•\overrightarrow{OB}$-|$\overrightarrow{OA}$|2=$\frac{11}{4}$-1=$\frac{7}{4}$,
故選:C
點評 本題考查了平面向量在幾何問題中的應(yīng)用.要利用向量的運算結(jié)合基底意識,將結(jié)論進行化歸,從而將問題轉(zhuǎn)化為基底間的數(shù)量積及其它運算問題.
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | -1 | B. | 不確定 | C. | 3 | D. | 0 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 2a | B. | 4a | C. | $\frac{1}{2a}$ | D. | $\frac{1}{4a}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com