13.已知$sin({α-β})cosα-cos({β-α})sinα=\frac{4}{5}$,β是第三象限角,求$sin({β+\frac{5}{4}π})$,$cos({β+\frac{π}{3}})$的值.

分析 由已知利用兩角差的正弦求得sinβ,進(jìn)一步求得cosβ,最后分別展開兩角和的正弦、余弦求得$sin({β+\frac{5}{4}π})$,$cos({β+\frac{π}{3}})$的值.

解答 解:由$sin({α-β})cosα-cos({β-α})sinα=\frac{4}{5}$,得sin(α-β)cosα-cos(α-β)sinα=$\frac{4}{5}$,
即sin(-β)=$\frac{4}{5}$,得sinβ=$-\frac{4}{5}$.
又β是第三象限角,∴cosβ=$-\frac{3}{5}$.
∴$sin({β+\frac{5}{4}π})$=sinβcos$\frac{5π}{4}$+cosβsin$\frac{5π}{4}$=(-$\frac{4}{5}$)×(-$\frac{\sqrt{2}}{2}$)+(-$\frac{3}{5}$)×(-$\frac{\sqrt{2}}{2}$)=$\frac{7\sqrt{2}}{10}$,
$cos({β+\frac{π}{3}})$=cosβcos$\frac{π}{3}$-sinβsin$\frac{π}{3}$=(-$\frac{3}{5}$)×$\frac{1}{2}$(-$\frac{4}{5}$)×$\frac{\sqrt{3}}{2}$=$-\frac{3+4\sqrt{3}}{10}$.

點(diǎn)評 本題考查三角函數(shù)的化簡求值,考查了兩角和與差的正弦、余弦的應(yīng)用,是基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.下列結(jié)論正確的是( 。
A.單位向量都相等B.對于任意$\overrightarrow{a}$,$\overrightarrow$,必有|$\overrightarrow{a}$+$\overrightarrow$|≤|$\overrightarrow{a}$|+|$\overrightarrow$|
C.若$\overrightarrow{a}$∥$\overrightarrow$,則一定存在實數(shù)λ,使$\overrightarrow{a}$=λ$\overrightarrow$D.若$\overrightarrow{a}$•$\overrightarrow$=0,則$\overrightarrow{a}$=0或$\overrightarrow$=0

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

4.已知F為拋物線y2=4x的焦點(diǎn),點(diǎn)A,B在拋物線上且位于x軸的兩側(cè),$\overrightarrow{OA}$•$\overrightarrow{OB}$=12(O為坐標(biāo)原點(diǎn)),則△AFO與△BFO面積之和的最小值是2$\sqrt{6}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

1.當(dāng)x>1>y時,有x2-2xy+y2≥m[xy-(x+y)+1]恒成立,則實數(shù)m的取值范圍為[-4,+∞).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.已知數(shù)列{ an}滿足a1=a,an+1=$\frac{1}{2-{a}_{n-1}}$(n∈N*).
(1)求a2,a3,a4
(2)猜想數(shù)列{an}的通項公式,并用數(shù)學(xué)歸納法證明.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.已知a1>a2>a3>1,則使得${a_i}{x^2}+(a_i^2+1)x+{a_i}>0$(i=1,2,3)都成立的x的取值范圍是( 。
A.$(0,\frac{1}{a_3})$B.$(-∞,-{a_3})∪(-\frac{1}{a_3},+∞)$
C.$(-∞,-{a_3}]∪(-\frac{1}{a_3},+∞)$D.$(-∞,-\frac{1}{a_3})∪(-{a_3},+∞)$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.有7個燈泡排成一排,現(xiàn)要求至少點(diǎn)亮其中的3個燈泡,且相鄰的燈泡不能同時點(diǎn)亮,則不同的點(diǎn)亮方法有( 。
A.11種B.21種C.120種D.126種

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.(1)若橢圓的一個焦點(diǎn)和短軸的兩個端點(diǎn)構(gòu)成一個正三角形,求該橢圓的離心率;
(2)已知F1,F(xiàn)2是橢圓的兩焦點(diǎn),過F1且與長軸垂直的直線交橢圓與A,B兩點(diǎn),若△ABF2是正三角形,求橢圓的離心率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.已知p:“?x>0,有l(wèi)nx+1≤x<ex成立”,q:“十進(jìn)制數(shù)2017轉(zhuǎn)化為八進(jìn)制數(shù)為1473(8)”,則下列命題為真的是( 。
A.p∧qB.(¬p)∨qC.p∨(¬q)D.(¬p)∧(¬q)

查看答案和解析>>

同步練習(xí)冊答案