我們把y=xm(m∈Q)叫做冪函數(shù).冪函數(shù)y=xm(m∈Q)的一個(gè)性質(zhì)是:當(dāng)m>0時(shí),在(0,+∞)上是增函數(shù);當(dāng)m<0時(shí),在(0,+∞)上是減函數(shù).設(shè)冪函數(shù)f(x)=xn(n≥2,n∈N).
(1)若gn(x)=f(x)+f(a-x),x∈(0,a),證明:
(2)若gn(x)=f(x)-f(x-a),對(duì)任意n≥a>0,證明:gn′(n)≥n!a.
【答案】分析:(1)由已知求gn(x)的值域,首先求gn′(x),在利用gn′(x)>0,gn′(x)<0分別求出函數(shù)的單調(diào)遞增區(qū)間和單調(diào)遞減區(qū)間,得到函數(shù)的極值點(diǎn)x=,進(jìn)而得到函數(shù)的最值,即可以得到函數(shù)的值域.
(2)當(dāng)x≥a>0時(shí),gn′(x)=n[xn-1-(x-a)n-1]>0,gn(x)是關(guān)于x的增函數(shù),當(dāng)n≥a時(shí),得(n+1)n-(n+1-a)n>nn-(n-a)n
進(jìn)而得>n+1,(*),根據(jù)(*)式可以構(gòu)造等式gn′(n)=•g2′(2)>n×(n-1)×…×3×2a=n!a,又g2′(2)=2[22-1-(2-a)2-1]=2!a,故n≥2,n∈N時(shí),有g(shù)n′(n)≥n!a
解答:證明(1)∵gn(x)=f(x)+f(a-x)=xn+(a-x)n,
∴gn′(x)=nxn-1+n(a-x)n-1(-1)=n[xn-1-(a-x)n-1]
令gn′(x)=0,得xn-1=(a-x)n-1,又x∈(0,a).
根據(jù)冪函數(shù)的單調(diào)性,得x=a-x,即,由下表:


又gn(x)在x=0,x=a處連續(xù),且gn(0)=gn(a)=an,

(2)∵gn(x)=f(x)-f(x-a)=xn-(x-a)n,
∴gn′(x)=n[xn-1-(x-a)n-1],
∵當(dāng)x≥a>0時(shí),gn′(x)>0,∴x≥a>0時(shí),gn(x)是關(guān)于x的增函數(shù),
∴當(dāng)n≥a時(shí),(n+1)n-(n+1-a)n>nn-(n-a)n
∴gn+1′(n+1)=(n+1)[(n+1)n-(n+1-a)n]>(n+1)[nn-(n-a)n]>(n+1)[nn-n(n-a)n-1]
=(n+1)n[nn-1-(n-a)n-1]=(n+1)gn′(n)
于是>n+1,而g2′(2)=2[22-1-(2-a)2-1]=2a
當(dāng)n≥3時(shí),gn′(n)=•g2′(2)>n×(n-1)×…×3×2a=n!a,
又n=2時(shí),g2′(2)=2[22-1-(2-a)2-1]=2!a
故n≥2,n∈N時(shí),有g(shù)n′(n)≥n!a
點(diǎn)評(píng):本題主要考查函數(shù)的單調(diào)性、極值、最值等基本的函數(shù)知識(shí),對(duì)(2)最關(guān)鍵的地方,是善于觀(guān)察,結(jié)合平時(shí)的總結(jié)經(jīng)驗(yàn),構(gòu)造等式gn′(n)=•g2′(2),進(jìn)而得到結(jié)果.這道題的結(jié)論中出現(xiàn)n!,這時(shí)我們要能夠想到構(gòu)造類(lèi)似的等式,這都是平時(shí)的總結(jié)經(jīng)驗(yàn),只有平時(shí)多總結(jié)、探索,才能在實(shí)戰(zhàn)中,做到舉一反三.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

我們把y=xm(m∈Q)叫做冪函數(shù).冪函數(shù)y=xm(m∈Q)的一個(gè)性質(zhì)是:當(dāng)m>0時(shí),在(0,+∞)上是增函數(shù);當(dāng)m<0時(shí),在(0,+∞)上是減函數(shù).設(shè)冪函數(shù)f(x)=xn(n≥2,n∈N).
(1)若gn(x)=f(x)+f(a-x),x∈(0,a),證明:
an2n-1
gn(x)<an

(2)若gn(x)=f(x)-f(x-a),對(duì)任意n≥a>0,證明:gn′(n)≥n!a.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

我們把y=xm(m∈Q)叫做冪函數(shù).冪函數(shù)y=xm(m∈Q)的一個(gè)性質(zhì)是:當(dāng)m>0時(shí),在(0,+∞)上是增函數(shù);當(dāng)m<0時(shí),在(0,+∞)上是減函數(shù).設(shè)冪函數(shù)f(x)=xn(n≥2,n∈N).
(1)若gn(x)=f(x)+f(a-x),x∈(0,a),證明:數(shù)學(xué)公式
(2)若gn(x)=f(x)-f(x-a),對(duì)任意n≥a>0,證明:gn′(n)≥n!a

查看答案和解析>>

同步練習(xí)冊(cè)答案