(本小題滿分12分)
某市文化館在春節(jié)期間舉行高中生“藍天海洋杯”象棋比賽,規(guī)則如下:兩名選手比賽時,每局勝者得分,負者得分,比賽進行到有一人比對方多分或打滿局時結(jié)束.假設選手甲與選手乙比賽時,甲每局獲勝的概率皆為,且各局比賽勝負互不影響.
(Ⅰ)求比賽進行局結(jié)束,且乙比甲多得分的概率;
(Ⅱ)設表示比賽停止時已比賽的局數(shù),求隨機變量的分布列和數(shù)學期望.
(Ⅰ).(Ⅱ)由隨機變量的分布列為









試題分析:(Ⅰ)由題意知,乙每局獲勝的概率皆為.…………1分
比賽進行局結(jié)束,且乙比甲多得分即頭兩局乙勝一局,3,4局連勝,則.                   …………4分
(Ⅱ)由題意知,的取值為.         ………5分
                 …………6分
      …………7分
                  …………9分
所以隨機變量的分布列為








………10分
…………12
點評:,考查了學生的計算能力及解決實際問題的能力,掌握求分布列的步驟及期望公式是解決此類問題的關鍵
練習冊系列答案
相關習題

科目:高中數(shù)學 來源:不詳 題型:解答題

甲、乙兩名同學參加“漢字聽寫大賽”選拔測試,在相同測試條件下,兩人5次測試的成績(單位:分)如下表:

(Ⅰ)請畫出甲、乙兩人成績的莖葉圖. 你認為選派誰參賽更好?說明理由(不用計算);
(Ⅱ)若從甲、乙兩人5次的成績中各隨機抽取一個成績進行分析,設抽到的兩個成績中,90分以上的個數(shù)為,求隨機變量的分布列和期望

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

設離散型隨機變量X的分布列為
X
0
1
2
3
4
P
0.2
0.1
0.1
0.3
m
求:(Ⅰ)2X+1的分布列;
(Ⅱ)|X-1|的分布列.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

現(xiàn)有4個人去參加春節(jié)聯(lián)歡活動,該活動有甲、乙兩個項目可供參加者選擇.為增加趣味性,約定:每個人通過擲一枚質(zhì)地均勻的骰子決定自己去參加哪個項目聯(lián)歡,擲出點數(shù)為1或2的人去參加甲項目聯(lián)歡,擲出點數(shù)大于2的人去參加乙項目聯(lián)歡.
(Ⅰ)求這4個人中恰好有2人去參加甲項目聯(lián)歡的概率;
(Ⅱ)求這4個人中去參加甲項目聯(lián)歡的人數(shù)大于去參加乙項目聯(lián)歡的人數(shù)的概率;
(Ⅲ)用分別表示這4個人中去參加甲、乙項目聯(lián)歡的人數(shù),記,求隨機變量的分布列與數(shù)學期望.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

已知,且,則等于(     )
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

(本小題滿分12分)
已知甲盒內(nèi)有大小相同的1個紅球和3個黑球,乙盒內(nèi)有大小相同的2個紅球和4個黑球,現(xiàn)從甲、乙兩個盒內(nèi)各任取2個球.
(Ⅰ)求取出的4個球中恰有1個紅球的概率;
(Ⅱ)設“從甲盒內(nèi)取出的2個球恰有1個為黑球”為事件A;“從乙盒內(nèi)取出的2個球都是黑球”為事件B,求在事件A發(fā)生的條件下,事件B發(fā)生的概率;
(Ⅲ)設為取出的4個球中紅球的個數(shù),求的分布列和數(shù)學期望。

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

如果隨機變量,且       .

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

若隨機變量等可能取值,那么
A.3B.4 C.10D.9

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

設隨機變量X~N(0,1),已知,則( 。
A.0.025 B.0.050 C.0.950 D.0.975

查看答案和解析>>

同步練習冊答案