已知圓C:x2+y2-2ax+2=0與直線y=x相切,則a=
 
考點:利用導(dǎo)數(shù)研究曲線上某點切線方程
專題:計算題,直線與圓
分析:由直線與圓相切,得到圓心到直線的距離等于圓的半徑,利用點到直線的距離公式列出關(guān)于a的方程,求出方程的解即可得到a的值.
解答: 解:圓C:x2+y2-2ax+2=0,可化為(x-a)2+y2=a2-2,
∴圓心為(a,0),半徑為
a2-2

∵圓C:x2+y2-2ax+2=0與直線y=x相切,
|a|
2
=
a2-2
,
∴a=±2.
故答案為:±2.
點評:此題考查了直線與圓的位置關(guān)系,當(dāng)直線與圓相切時,圓心到直線的距離等于圓的半徑,熟練掌握此性質(zhì)是解本題的關(guān)鍵.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知點E、F分別是正方體ABCD-A1B1C1D1的棱AB、AA1的中點,點M、N分別是線段D1E與C1F上的點,則滿足與平面ABCD平行的直線MN有( 。
A、0條B、1條C、2條D、無數(shù)條

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(1)證明兩角差的余弦公式C(α-β):cos(α-β)=cosαcosβ+sinαsinβ;
(2)若cosα=-
3
5
,α∈(0,π),求cos(α-
π
4
)的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=Asin(ωx+
π
4
)(A>0,ω>0)的振幅為2,其圖象的相鄰兩個對稱中心之間的距離為
π
3

(Ⅰ)若f(
2
3
α+
π
12
)=
6
5
,0<α<π,求sinα;
(Ⅱ)將函數(shù)y=f(x)的圖象向右平移
π
6
個單位得到y(tǒng)=g(x)的圖象,若函數(shù)y=g(x)-k是在[0,
11
36
π]上有零點,求實數(shù)k的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)等差數(shù)列{an}的前n項和為Sn,且S4=4S2,a4=2a2+1,求數(shù)列{an}的通項公式及前n項和Sn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)x,y,z∈R+,x2+y2+z2=1,則S=
(1+z)2
2xyz
的最小值為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若實數(shù)x,y滿足
x-y+1≥0
2x-y-2≤0
x≥1
,且z=ax+y的最小值為2,則實數(shù)a的值為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

計算:cot260°+tan35°+tan10°cot415°=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖所示,PA與圓O相切于A,直線PO交圓O于B,C兩點,AD⊥BC,垂足為D,且D是OC的中點,若PA=6,則PC=
 

查看答案和解析>>

同步練習(xí)冊答案