17.f($\sqrt{x}$+1)=x+3,則f(x)=x2-2x+4,(x≥1).

分析 利用換元法,令t=$\sqrt{x}+1$,1≤t,則x=(t-1)2,帶入化簡(jiǎn)可得f(x).

解答 解:由題意:f($\sqrt{x}$+1)=x+3,
令t=$\sqrt{x}+1$,1≤t,則x=(t-1)2,
那么:f($\sqrt{x}$+1)=x+3轉(zhuǎn)化為g(t)=(t-1)2+3=t2-2t+4,(t≥1)
所以f(x)=x2-2x+4,(x≥1).
故答案為:x2-2x+4,(x≥1).

點(diǎn)評(píng) 本題考查了函數(shù)解析式的求法,利用了換元法,屬于基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

20.定義一種運(yùn)算(a,b)*(c,d)=ad-bc,若函數(shù)f(x)=(1,log3x)*(tan$\frac{13π}{4}$,($\frac{1}{5}$)x),x0是方程f(x)=0的解,且0≤x0<x1,則f(x1)的值( 。
A.恒為負(fù)值B.等于0C.恒為正值D.不大于0

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

1.已知函數(shù)y=x2+bx+c的單調(diào)減區(qū)間是(-∞,1],則( 。
A.b≤-2B.b≤-1C.b=-1D.b=-2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

5.下列有關(guān)命題的說(shuō)法錯(cuò)誤的是( 。
A.命題“同位角相等,兩直線平行”的逆否命題為:“兩直線不平行,同位角不相等”
B.“若實(shí)數(shù)x,y滿足x2+y2=0,則x,y全為0”的否命題為真命題
C.若p∧q為假命題,則p、q均為假命題
D.對(duì)于命題p:?x0∈R,${x_0}^2+2{x_0}+2≤0$,則?p:?x∈R,x2+2x+2>0

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

12.函數(shù)$y=2sin(x+\frac{π}{6})$,$x∈[\frac{π}{6},\frac{2π}{3}]$的值域是[1,2].

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

2.已知圓x2+y2-4x=0,直線l:mx-y+2-m=0.則l與C(  )
A.相交B.相切
C.相離D.以上三個(gè)選項(xiàng)均有可能

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

9.用二分法求函數(shù)f(x)=-x3-3x+5的零點(diǎn)取的初始區(qū)間可以是( 。
A.(1,2)B.(-2,0)C.(0,1)D.(-2,1)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

6.已知命題p:指數(shù)函數(shù)f(x)=(2a-6)x在R上單調(diào)遞減,命題q:關(guān)于x的方程x2-3ax+2a2+1=0的兩個(gè)相異實(shí)根均大于3.若p、q中有且僅有一個(gè)為真命題,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

7.閱讀程序:若INPUT語(yǔ)句中輸入m,n的數(shù)據(jù)分別是72,168,則程序運(yùn)行的結(jié)果為24.

查看答案和解析>>

同步練習(xí)冊(cè)答案