設(shè)函數(shù),若g(x)=(x-2)2f(x-1),y=g(x)的反函數(shù)y=g-1(x),則g(3)•g-1(1)的值為( )
A.-3
B.-1
C.1
D.3
【答案】分析:f(x)為分段函數(shù),要求g(3)•g-1(1)可以先求g(3),代入g(x)=(x-2)2f(x-1),根據(jù)分段函數(shù)的性質(zhì)即可求得,再求g-1(1)相當(dāng)于求方程(x-2)2f(x-1)=1,求出x的值;
解答:解:∵函數(shù),若g(x)=(x-2)2f(x-1),
∴g(3)=(3-2)2f(2)=f(2)=1;
要求g-1(1),y=g(x)的反函數(shù)y=g-1(x),
∴可得方程(x-2)2f(x-1)=1,
當(dāng)x=1時(shí),f(x-1)=f(0)=0,顯然不可能;(x-2)2≥0,∴f(x-1)≠-1,即x≥0
若(x-2)2=1,可得x=3或x=1(舍去),
當(dāng)x=3時(shí),(3-2)2f(2)=1,滿足,∴g-1(1)=3,
∴g(3)•g-1(1)=3,
故選D;
點(diǎn)評(píng):此題主要考查函數(shù)的值的求法以及反函數(shù)的定義,難度中等,考查的知識(shí)點(diǎn)比較全面,是一道好題;
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源:2009年上海市松江區(qū)高考數(shù)學(xué)二模試卷(文科)(解析版) 題型:解答題

已知冪函數(shù)在區(qū)間(0,+∞)上是單調(diào)增函數(shù),且為偶函數(shù).
(1)求函數(shù)f(x)的解析式;
(2)設(shè)函數(shù),若g(x)>0對(duì)任意x∈[-1,1]恒成立,求實(shí)數(shù)q的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知冪函數(shù)數(shù)學(xué)公式為偶函數(shù)且在區(qū)間(0,+∞)上是單調(diào)增函數(shù).
(1)求函數(shù)f(x)的解析式;
(2)設(shè)函數(shù)數(shù)學(xué)公式,若g(x)>0對(duì)任意x∈[-1,1]恒成立,求實(shí)數(shù)q的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2012-2013學(xué)年貴州省黔西南州普安一中高三(上)9月月考數(shù)學(xué)試卷(文科)(解析版) 題型:解答題

已知冪函數(shù)為偶函數(shù)且在區(qū)間(0,+∞)上是單調(diào)增函數(shù).
(1)求函數(shù)f(x)的解析式;
(2)設(shè)函數(shù),若g(x)>0對(duì)任意x∈[-1,1]恒成立,求實(shí)數(shù)q的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2008-2009學(xué)年浙江省溫州市十校聯(lián)合體高三(上)期初數(shù)學(xué)試卷(理科)(解析版) 題型:解答題

已知冪函數(shù)為偶函數(shù)且在區(qū)間(0,+∞)上是單調(diào)增函數(shù).
(1)求函數(shù)f(x)的解析式;
(2)設(shè)函數(shù),若g(x)>0對(duì)任意x∈[-1,1]恒成立,求實(shí)數(shù)q的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案