16.現(xiàn)有12張不同的卡片,其中紅色、黃色、藍(lán)色、綠色卡片各3張,從中任取3張,要求這3張卡片不能是同一種顏色,且紅色卡片至多1張,不同取法的種數(shù)為189.

分析 用間接法分析,先求出“從12張卡片中任取3張”的情況數(shù)目,再分析計(jì)算其中“同一種顏色”以及“有2張紅色”的情況數(shù)目,用“從12張卡片中任取3張”的情況數(shù)目減去“同一種顏色”以及“有2張紅色”的情況數(shù)目即可得答案.

解答 解:根據(jù)題意,不考慮限制條件,從12張卡片中任取3張有C123種情況,
其中如果取出的3張為同一種顏色,有4C33種情況,
如果取出的3張有2張紅色的卡片,有C32C91種情況,
則滿足條件的取法有C123-4C33-C32C91=189種;
故答案為:189.

點(diǎn)評(píng) 本題考查排列、組合的應(yīng)用,解題時(shí)注意利用排除法分析,即先不考慮限制條件,求出全部的情況數(shù)目,再分析排出其中不符合條件的情況數(shù)目.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.某校高一(2)班共有60名同學(xué)參加期末考試,現(xiàn)將其數(shù)學(xué)學(xué)科成績(均為整數(shù))分成六個(gè)分?jǐn)?shù)段[40,50),[50,60),…,[90,100],畫出如圖所示的部分頻率分布直方圖,請(qǐng)觀察圖形信息,回答下列問題:
(1)求a并估計(jì)這次考試中該學(xué)科的中位數(shù)、平均值;
(2)現(xiàn)根據(jù)本次考試分?jǐn)?shù)分成下列六段(從低分段到高分段依次為第一組、第二組…第六組)為提高本班數(shù)學(xué)整體成績,決定組與組之間進(jìn)行幫扶學(xué)習(xí).若選出的兩組分?jǐn)?shù)之差不小于30分(以分?jǐn)?shù)段為依據(jù),不以具體學(xué)生分?jǐn)?shù)為依據(jù),如:[40,50),[70,80)這兩組分?jǐn)?shù)之差為30分),則稱這兩組為“最佳組合”,試求選出的兩組為“最佳組合”的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.某幾何體的三視圖如圖所示,則該幾何體的表面積為(  )
A.30B.31.5C.33D.35.5

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.已知向量$\overrightarrow a$,$\overrightarrow b$滿足$|{\overrightarrow a}|=1$,($\overrightarrow{a}$+$\overrightarrow$)⊥$\overrightarrow{a}$,$({2\overrightarrow a+\overrightarrow b})⊥\overrightarrow b$,則向量$\overrightarrow a$,$\overrightarrow b$的夾角為( 。
A.$\frac{π}{6}$B.$\frac{π}{4}$C.$\frac{π}{3}$D.$\frac{3π}{4}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

11.過橢圓C:$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1$(a>b>0)上一點(diǎn)P向x軸作垂線,垂足為右焦點(diǎn)F,A、B分別為橢圓C的左頂點(diǎn)和上頂點(diǎn),且AB∥OP,$|{AF}|=\sqrt{6}+\sqrt{3}$.
(Ⅰ)求橢圓C的方程;
(Ⅱ)若動(dòng)直線l與橢圓C交于M、N兩點(diǎn),且以MN為直徑的圓恒過坐標(biāo)原點(diǎn)O.問是否存在一個(gè)定圓與動(dòng)直線l總相切.若存在,求出該定圓的方程;若不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

1.若實(shí)數(shù)x,y滿足不等式組$\left\{\begin{array}{l}{x≥0}\\{y≥0}\\{x-y+1≤0}\\{x+y-3≤0}\end{array}\right.$,則$\frac{y+1}{x}$的最小值為3.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.如圖,四邊形ABCD是梯形.四邊形CDEF是矩形.且平面ABCD⊥平面CDEF,∠BAD=90°,AB∥CD,M是線段AE上的動(dòng)點(diǎn).
(Ⅰ)試確定點(diǎn)M的位置,使AC∥平面DMF,并說明理由;
(Ⅱ)在(Ⅰ)的條件下,且∠AED=45°,AE=$\sqrt{2}$,AD=$\frac{1}{2}$CD,連接AF,求三棱錐M-ADF的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.已知函數(shù)f(x)=-x2+6x+a2-1,那么下列式子中正確的是(  )
A.$f(\sqrt{2})<f(3)<f(4)$B.$f(3)<f(\sqrt{2})<f(4)$C.$f(\sqrt{2})<f(4)<f(3)$D.$f(3)<f(4)<f(\sqrt{2})$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.log39=( 。
A.5B.2C.3D.4

查看答案和解析>>

同步練習(xí)冊(cè)答案