11.若a,b∈N,則$\frac{1}{a}$+$\frac{1}$>1成立的充要條件是(  )
A.a,b都不大于2B.a,b中至少有一個(gè)等于1
C.a,b都大于2D.a,b中至多有一個(gè)等于1

分析 根據(jù)a,b都是N,求出$\frac{1}{a}$和$\frac{1}$的范圍,從而求出滿足條件的充要條件即可.

解答 解:∵a,b∈N,
∴$\frac{1}{a}$≤1,$\frac{1}$≤1,
故$\frac{1}{a}$+$\frac{1}$>1成立的充要條件是:a,b中至少有一個(gè)等于1,
故選:B.

點(diǎn)評(píng) 本題考查了充分必要條件,考查不等式的性質(zhì),是一道基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.設(shè)函數(shù)f(x)=|x+1|+|x-2|.
(1)若函數(shù)$g(x)=\sqrt{|{x+1}|+|{x-2}|-a}$的定義域?yàn)镽,試求a的取值范圍;
(2)若f(x)=$\frac{{2{a^2}+4}}{{\sqrt{{a^2}+1}}}$成立,求x的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.設(shè)p:?x0∈R,mx02+1≤0,q:x∈R,x2+mx+1>0,若p∨q為真命題,則實(shí)數(shù)m的取值范圍是(  )
A.(-∞,2)B.(2,+∞)C.(-2,2)D.(-∞,2]∪[2,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

19.某空間幾何體的三視圖如圖所示,則該幾何體的體積是4.   

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

6.若存在實(shí)數(shù)x使|x-a|+|x|≤4成立,則實(shí)數(shù)a的取值范圍是[-4,4].

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

16.已知雙曲線x2-$\frac{{y}^{2}}{^{2}}$=1(b>0)的離心率為2,則其漸近線的方程為y=$±\sqrt{3}x$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.某幾何體三視圖如圖所示,則該幾何體的最短的棱長度是(  )
A.1B.$\sqrt{2}$C.$\sqrt{3}$D.2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.函數(shù)f(x)=$\frac{1}{3}$ax3+$\frac{1}{2}$ax2-2ax+2a+1的圖象經(jīng)過四個(gè)象限的一個(gè)充分但不必要條件是( 。
A.-$\frac{4}{3}$<a<-$\frac{1}{3}$B.-1<a<-$\frac{1}{2}$C.-$\frac{6}{5}$<a<-$\frac{3}{16}$D.-2<a<0

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.下列特稱命題中假命題為( 。
A.空間中過直線外一點(diǎn)有且僅有一條直線與該直線垂直
B.僅存在一個(gè)實(shí)數(shù)b2,使得-9,b1,b2,b3,-1成等比數(shù)列
C.存在實(shí)數(shù)a,b滿足a+b=2,使得3a+3b的最小值是6
D.?a∈(-4,0],ax2+ax-1<0恒成立

查看答案和解析>>

同步練習(xí)冊答案