分別求適合下列條件圓錐曲線的標(biāo)準(zhǔn)方程:
(1)焦點 為、且過點橢圓;
(2)與雙曲線有相同的漸近線,且過點的雙曲線.

(1)        (2)

解析試題分析:解:(1)設(shè)橢圓的標(biāo)準(zhǔn)方程為).
因為,所以,
故橢圓的標(biāo)準(zhǔn)方程為.               6分
(2)設(shè)雙曲線的標(biāo)準(zhǔn)方程為).
因為雙曲線過點,所以,解得
故雙曲線的方程為,即.    12
考點:圓錐曲線的方程
點評:主要是考查了圓錐曲線的性質(zhì)與方程的運用,屬于基礎(chǔ)題。

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

(13分)已知橢圓C:(a>b>0)的兩個焦點分別為F1(﹣1,0),F(xiàn)2(1,0),且橢圓C經(jīng)過點
(I)求橢圓C的離心率:
(II)設(shè)過點A(0,2)的直線l與橢圓C交于M,N兩點,點Q是線段MN上的點,且,求點Q的軌跡方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

如圖,拋物線

(I)
(II)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

以原點為極點,以軸的正半軸為極軸建立極坐標(biāo)系,已知曲線,過點的直線的參數(shù)方程為,設(shè)直線與曲線分別交于;
(1)寫出曲線和直線的普通方程;
(2)若成等比數(shù)列,求的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知橢圓:的焦距為,離心率為,其右焦點為,過點作直線交橢圓于另一點.
(Ⅰ)若,求外接圓的方程;
(Ⅱ)若直線與橢圓相交于兩點、,且,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知拋物線E:y2= 4x,點P(2,O).如圖所示,直線.過點P且與拋物線E交于A(xl,y1)、B( x2,y2)兩點,直線過點P且與拋物線E交于C(x3, y3)、D(x4,y4)兩點.過點P作x軸的垂線,與線段AC和BD分別交于點M、N.

(I)求y1y2的值;
(Ⅱ)求訌:|PM|="|" PN|

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知圓的方程為,過點作圓的兩條切線,切點分別為,直線恰好經(jīng)過橢圓的右頂點和上頂點.

(Ⅰ)求橢圓的方程;
(Ⅱ)設(shè)是橢圓垂直于軸的一條弦,所在直線的方程為是橢圓上異于、的任意一點,直線、分別交定直線于兩點、,求證.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

動圓M過定點A(-,0),且與定圓A´:(x-)2+y2=12相切.
(1)求動圓圓心M的軌跡C的方程;
(2)過點P(0,2)的直線l與軌跡C交于不同的兩點E、F,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知橢圓的中心在原點,焦點在軸上,離心率為,它的一個頂點恰好是拋物線的焦點.
(Ⅰ)求橢圓的方程;
(Ⅱ)過點的直線與橢圓相切,直線軸交于點,當(dāng)為何值時的面積有最小值?并求出最小值.

查看答案和解析>>

同步練習(xí)冊答案