18.已知f(x)是定義在R上的函數(shù),滿足f(x)=-f(-x),且當(dāng)x<0時(shí),f(x)=x•$\root{3}{-1-x}$,則f(9)=18.

分析 利用函數(shù)的奇偶性,真假求解函數(shù)值即可.

解答 解:f(x)是定義在R上的函數(shù),滿足f(x)=-f(-x),函數(shù)是奇函數(shù),
當(dāng)x<0時(shí),f(x)=x•$\root{3}{-1-x}$,則f(9)=-f(-9)=-(-9)×$\root{3}{-1+9}$=18.
故答案為:18;

點(diǎn)評(píng) 本題考查函數(shù)的奇偶性的性質(zhì),函數(shù)值的求法,是基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

8.設(shè)集合A={-4,t2},集合B={t-5,9,1-t},若9∈A∩B,則實(shí)數(shù)t=-3.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

9.圓心為(3,0),而且與y軸相切的圓的標(biāo)準(zhǔn)方程為(x-3)2+y2=9.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

6.已知函數(shù)f(x)=|x|-x+1,則不等式f(1-x2)>f(1-2x)的解集為{x|x>2或x<-1}.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

13.已知f(x)=$\frac{a•{2}^{x}+a+2}{{2}^{x}+1}$(x∈R),若f(x)滿足f(-x)=-f(x).
(1)求實(shí)數(shù)a的值;
(2)證明f(x)是R上的單調(diào)減函數(shù)(定義法).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.已知函數(shù)f(x)=xln(x+$\sqrt{2a+{x}^{2}}$(a>0)為偶函數(shù).
(1)求a的值;
(2)求g(x)=ax2+2x+1在區(qū)間[-6,3]上的值域.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.已知集合A={0,1},B={x,y,z},則從集合A到集合B的映射可能有( 。┓N.
A.6B.8C.9D.12

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

7.已知函數(shù)f(x)=$\sqrt{3}$sin(ωx-$\frac{π}{6}}$)+b(ω>0),且函數(shù)圖象的對(duì)稱中心到對(duì)稱軸的最小距離為$\frac{π}{4}$,當(dāng)x∈[0,$\frac{π}{4}}$]時(shí),f(x)的最大值為1.
(I)求函數(shù)f(x)的解析式;
(Ⅱ)將函數(shù)f(x)的圖象向右平移$\frac{π}{12}$個(gè)單位長度得到函數(shù)g(x)圖象,若g(x)-3≤m≤g(x)+3在x∈[0,$\frac{π}{3}}$]上恒成立,求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.已知向量$\overrightarrow{m}$=(cosα-$\frac{{\sqrt{2}}}{3}$,-1),$\overrightarrow{n}$=(sinα,1),$\overrightarrow{m}$與$\overrightarrow{n}$為共線向量,且α∈[-$\frac{π}{2}$,0].
(1)求sinα+cosα的值;             
(2)求$\frac{sin2α}{sinα-cosα}$的值.

查看答案和解析>>

同步練習(xí)冊答案