15.為迎接“雙十一”活動,某網(wǎng)店需要根據(jù)實際情況確定經(jīng)營策略.
(1)采購員計劃分兩次購買一種原料,第一次購買時價格為a元/個,第二次購買時價格為b元/個(其中a≠b).該采購員有兩種方案:方案甲:每次購買m個;方案乙:每次購買n元.請確定按照哪種方案購買原料平均價格較。
(2)“雙十一”活動后,網(wǎng)店計劃對原價為100元的商品兩次提價,現(xiàn)有兩種方案:方案丙:第一次提價p,第二次提價q;方案。旱谝淮翁醿r$\frac{p+q}{2}$,第二次提價$\frac{p+q}{2}$,(其中p≠q)請確定哪種方案提價后價格較高.

分析 (1)求出方案甲、乙的平均價格,作差,即可進行比較;
(2)求出方案丙、定的價格,作差,即可進行比較.

解答 解:(1)方案甲平均價格為$\frac{ma+mb}{2m}$=$\frac{a+b}{2}$,方案乙平均價格為$\frac{2n}{\frac{n}{a}+\frac{n}}$=$\frac{2ab}{a+b}$,
∵$\frac{a+b}{2}$-$\frac{2ab}{a+b}$=$\frac{(a-b)^{2}}{2(a+b)}$>0,
∴方案乙平均價格較。
(2)方案丙:第一次提價p,第二次提價q,則價格為100(1+p)(1+q),
方案。旱谝淮翁醿r$\frac{p+q}{2}$,第二次提價$\frac{p+q}{2}$,則價格為$100(1+\frac{p+q}{2})^{2}$,
∵100(1+p)(1+q)-$100(1+\frac{p+q}{2})^{2}$=-100$(\frac{p-q}{2})^{2}$>0,
∴按照方案丁提價后的價格較高.

點評 本題考查利用數(shù)學知識解決實際問題,考查作差方法的運用,屬于中檔題.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:填空題

5.集合A={y|y=x2+1,x∈R},B={y|y=2x+1,x∈R},則A∩B={y|y≥1}.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

6.已知集合M={x|y=log2x},N={y|y=($\frac{1}{2}$)x,x>1},則M∩N=( 。
A.(0,$\frac{1}{2}$)B.(0,1)C.($\frac{1}{2}$,1)D.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

3.lg$\frac{{4\sqrt{2}}}{7}-lg\frac{2}{3}+lg7\sqrt{5}$=lg6+$\frac{1}{2}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

10.設函數(shù)f(x)=x2-2tx+2,其中 t∈R.
(1)若t=1,求函數(shù)f(x)在區(qū)間[0,4]上的取值范圍;
(2)若t=1,且對任意的x∈[a,a+2],都有f(x)<5,求實數(shù)a的取值范圍;
(3)若對任意的x1,x2∈[0,4],都有f(x1)-f(x2)≤8,求t的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

20.若點$(sin\frac{5π}{6},cos\frac{8π}{3})$在角α的終邊上,則sinα的值為( 。
A.$\frac{{\sqrt{2}}}{2}$B.$-\frac{{\sqrt{2}}}{2}$C.$-\frac{1}{2}$D.$\frac{1}{2}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

7.如圖,△ABC三個內(nèi)角A,B,C所對的邊分別為a,b,c,已知C=$\frac{π}{3}$,$\frac{a}$=$\frac{cosB}{cosA}$,在△ABC內(nèi)取一點P,使得PB=3,過點P分別作直線BA,BC的垂線PM,PN,垂足分別是M,N,則|PM|+|PN|的最大值為3.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

4.已知a>0且a≠1,求滿足loga$\frac{3}{5}$<1的a的取值范圍(0,$\frac{3}{5}$)∪(1,+∞).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

5.在sinB=$\frac{{\sqrt{3}}}{2}$中,B=60°,AC=$\sqrt{3}$,則AB+2BC的最大值為2$\sqrt{7}$.

查看答案和解析>>

同步練習冊答案