(本題滿分12分)已知在平面直角坐標(biāo)系中的一個橢圓,它的中心在原點,左焦點為,且過,設(shè)點.
(1)求該橢圓的標(biāo)準(zhǔn)方程;
(2)若是橢圓上的動點,求線段中點的軌跡方程;

解:(1)由已知得橢圓的長半軸a=2,
半焦距c=,則短半軸b=1.
又橢圓的焦點在x軸上, ∴橢圓的標(biāo)準(zhǔn)方程為…………… 6分
(2)設(shè)線段PA的中點為M(x,y) ,點P的坐標(biāo)是(x0,y0),
,得
由,點P在橢圓上,得,
∴線段PA中點M的軌跡方程是…………… 12分

解析

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知直線l:  y="x-2" 與拋物線y2=2x相交于兩點A、B,
(1)求證:OA⊥OB
(2)求線段AB的長度

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知拋物線C的方程C:y2 ="2" p x(p>0)過點A(1,-2).
(I)求拋物線C的方程,并求其準(zhǔn)線方程;
(II)是否存在平行于OA(O為坐標(biāo)原點)的直線l,使得直線l與拋物線C有公共點,且直線
OA與l的距離等于?若存在,求出直線l的方程;若不存在,說明理由

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

求過點,且與橢圓有相同焦點的橢圓的標(biāo)準(zhǔn)方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知橢圓的長軸長為2a,焦點是F1(-,0)、F2(,0),點F1到直線x=-的距離為,過點F2且傾斜角為銳角的直線l與橢圓交于AB兩點,使得|F2B|=3|F2A|.
(1)求橢圓的方程;
(2)求直線l的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

(12分) 在直角坐標(biāo)系中,點到點,的距離之和是,點的軌跡是,直線與軌跡交于不同的兩點.⑴求軌跡的方程;⑵是否存在常數(shù)?若存在,求出的值;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知一隧道的截面是一個半橢圓面(如圖所示),要保證車輛正常通行,車頂離隧道頂部至少要有米的距離,現(xiàn)有一貨車,車寬米,車高米.
(1)若此隧道為單向通行,經(jīng)測量隧道的跨度是米,則應(yīng)如何設(shè)計隧道才能保證此貨車正常通行?
(2)圓可以看作是長軸短軸相等的特殊橢圓,類比圓面積公式,
請你推測橢圓的面積公式.并問,當(dāng)隧道為雙向通行(車道間的距離忽略不記)時,要使此貨車安全通過,應(yīng)如何設(shè)計隧道,才會使同等隧道長度下開鑿的土方量最小?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知雙曲線  
(1)求以為中點的弦所在的直線的方程
(2)求過的弦的中點的軌跡方程

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:單選題

在平面直角坐標(biāo)系中,為原點,,,動點滿足,
的取值范圍是(  )

A.B.
C.D.

查看答案和解析>>

同步練習(xí)冊答案