已知正三角形的兩個頂點是O(0,0)和A(6,0),則它的外接圓的方程是___________.

思路解析:本題需要用幾何性質(zhì)來求解外接圓的圓心和半徑長.首先判斷有正三角形在x軸上方和下方兩種情況.

圖4-5

對正三角形在x軸上方的情況,利用平面幾何知識,

容易得到|OP|=3,∠COP=30°,

解三角形得到|OC|=,為外接圓半徑長,|CP|=,

所以圓心C的坐標為(3,),

所以此時外接圓的方程為(x-3)2+(y-)2=12;

同理可求得正三角形在x軸下方時外接圓的方程為(x-3)2+(y+)2=12.

答案:(x-3)2+(y±)2=12

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源:導(dǎo)學大課堂必修二數(shù)學蘇教版 蘇教版 題型:022

如下圖,已知正三角形的兩個頂點是O(0,0)和A(6,0),則它的外接圓方程是________.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:022

已知正三角形的兩個頂點是O(00)A(6,0),則它的外接圓的方程為_______________

查看答案和解析>>

科目:高中數(shù)學 來源:設(shè)計必修二數(shù)學人教A版 人教A版 題型:022

已知正三角形的兩個頂點是O(0,0)和A(6,0),則它的外接圓的方程是________.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:022

已知正三角形的兩個頂點是O(0,0)和A(6,0),則它的外接圓的方程是___________.

查看答案和解析>>

同步練習冊答案