精英家教網(wǎng)(1)如圖,在平面直角坐標(biāo)系xOy中,一單位圓的圓心的初始位置在(0,1),此時(shí)圓上一點(diǎn)P的位置在(0,0),圓在x軸上沿正向滾動.當(dāng)圓滾動到圓心位于(2,1)時(shí),
OP
的坐標(biāo)為
 

(2)在矩形ABCD中,邊AB、AD的長分別為2、1,若M、N分別是邊BC、CD上的點(diǎn),且滿足
|
BM
|
|
BC
|
=
|
CN
|
|
CD
|
,則
AM
AN
的取值范圍是
 
分析:(1)由題意點(diǎn)P旋轉(zhuǎn)了2弧度,進(jìn)而可得P的坐標(biāo),即可得向量
OP
的坐標(biāo);
(2)建立坐標(biāo)系,設(shè)N(x,1)(0≤x≤2),由題意可得
AN
,
AM
的坐標(biāo),進(jìn)而可得其數(shù)量積,可得范圍.
解答:精英家教網(wǎng)解:(1)根據(jù)題意可知圓滾動了2單位個(gè)弧長,點(diǎn)P旋轉(zhuǎn)了
2
1
=2
弧度,
此時(shí)點(diǎn)P的坐標(biāo)為:xP=2-cos(2-
π
2
)=2-sin2
,yP=1+sin(2-
π
2
)=1-cos2

OP
=(2-sin2, 1-cos2)

(2)如圖所示,以A為原點(diǎn),向量
AB
所在直線為x軸,過AD所在直線為y軸建立平面直角坐標(biāo)系.
∵在矩形ABCD中,AB=2,AD=1,
∴A(0,0),B(2,0),C(2,1),D(0,1).
設(shè)N(x,1)(0≤x≤2),則|
BC
|=1,|
CN
|=2-x,|
CD
|=2

∴由
|
BM
|
|
BC
|
=
|
CN
|
|
CD
|
得,|
BM
|=1-
1
2
x

∴M的坐標(biāo)為(2, 1-
1
2
x)

AN
=(x, 1), 
AM
=(2, 1-
1
2
x)

AN
AM
=2x+1-
1
2
x=
3
2
x+1

∵0≤x≤2,∴1≤
3
2
x+1≤4

AN
AM
的取值范圍是[1,4].
故答案為:(2-sin2,1-cos2);[1,4]
點(diǎn)評:本題考查向量的應(yīng)用,涉及平面向量的數(shù)量積的運(yùn)算,屬中檔題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖是在豎直平面內(nèi)的一個(gè)“通道游戲”.圖中豎直線段和斜線段都表示通道,并且在交點(diǎn)處相遇,若豎直線段有第一條的為第一層,有二條的為第二層,…,依此類推.現(xiàn)有一顆小彈子從第一層的通道里向下運(yùn)動.記小彈子落入第n層第m個(gè)豎直通道(從左至右)的概率為P(n,m).(已知在通道的分叉處,小彈子以相同的概率落入每個(gè)通道)
(Ⅰ)求P(2,1),P(3,2)的值,并猜想P(n,m)的表達(dá)式.(不必證明)
(Ⅱ)設(shè)小彈子落入第6層第m個(gè)豎直通道得到分?jǐn)?shù)為ξ,其中ξ=
4-m,1≤m≤3
m-3,4≤m≤6
,試求ξ的分布列及數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖是在豎直平面內(nèi)的一個(gè)“通道游戲”.圖中豎直線段和斜線段都表示通道,并且在交點(diǎn)處相遇,若豎直線段有第一條的為第一層,有二條的為第二層,…,依此類推.現(xiàn)有一顆小彈子從第一層的通道里向下運(yùn)動.記小彈子落入第n層第m個(gè)豎直通道(從左至右)的概率為P(n,m).(已知在通道的分叉處,小彈子以相同的概率落入每個(gè)通道)
(Ⅰ)求P(2,1),P(3,2)的值,并猜想P(n,m)的表達(dá)式.(不必證明)
(Ⅱ)設(shè)小彈子落入第6層第m個(gè)豎直通道得到分?jǐn)?shù)為ξ,其中ξ=
4-m,1≤m≤3
m-3,4≤m≤6
,試求ξ的分布列及數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,在平面直坐標(biāo)系xOy中,已知橢圓C:
x2
a2
+
y2
b2
=1(a>b>0)
,經(jīng)過點(diǎn)(1,e),其中e為橢圓的離心率.且橢圓C與直線y=x+
3
有且只有一個(gè)交點(diǎn).
(Ⅰ)求橢圓C的方程;
(Ⅱ)設(shè)不經(jīng)過原點(diǎn)的直線l與橢圓C相交與A,B兩點(diǎn),第一象限內(nèi)的點(diǎn)P(1,m)在橢圓上,直線OP平分線段AB,求:當(dāng)△PAB的面積取得最大值時(shí)直線l的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2011•丹東模擬)如圖,在豎直平面內(nèi)有一個(gè)“游戲滑道”,空白部分表示光滑滑道,黑色正方形表示障礙物,自上而下第一行有1個(gè)障礙物,第二行有2個(gè)障礙物,…,依此類推.一個(gè)半徑適當(dāng)?shù)墓饣鶆蛐∏驈娜肟贏投入滑道,小球?qū)⒆杂上侣,已知小球每次遇到正方形障礙物上頂點(diǎn)時(shí),向左、右兩邊下落的概率都是
1
2
.記小球遇到第n行第m個(gè)障礙物(從左至右)上頂點(diǎn)的概率為P(n,m).
(Ⅰ)求P(4,1),P(4,2)的值,并猜想P(n,m)的表達(dá)式(不必證明);
(Ⅱ)已知f(x)=
4-x,1≤x≤3
x-3,3<x≤6
,設(shè)小球遇到第6行第m個(gè)障礙物(從左至右)上頂點(diǎn)時(shí),得到的分?jǐn)?shù)為ξ=f(m),試求ξ的分布列及數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2012-2013學(xué)年重慶市九校高三(上)聯(lián)考數(shù)學(xué)試卷(理科)(解析版) 題型:解答題

如圖,在平面直坐標(biāo)系xOy中,已知橢圓,經(jīng)過點(diǎn)(1,e),其中e為橢圓的離心率.且橢圓C與直線有且只有一個(gè)交點(diǎn).
(Ⅰ)求橢圓C的方程;
(Ⅱ)設(shè)不經(jīng)過原點(diǎn)的直線l與橢圓C相交與A,B兩點(diǎn),第一象限內(nèi)的點(diǎn)P(1,m)在橢圓上,直線OP平分線段AB,求:當(dāng)△PAB的面積取得最大值時(shí)直線l的方程.

查看答案和解析>>

同步練習(xí)冊答案