【題目】如圖所示,已知長方形ABCD,AD=2CD=4,M、N分別為AD、BC的中點,將長方形ABCD沿MN折到MNFE位置,且使平面MNFE⊥平面ABCD.
(1)求證:直線CM⊥面DFN;
(2)求點C到平面FDM的距離.
【答案】(1)見解析;(2)
【解析】
(1)推導(dǎo)出DN⊥CM,CM⊥FN,由此能證明CM⊥平面DFN.(2)以M為原點,MN為x軸,MA為y軸,ME為z軸,建立空間直角坐標(biāo)系,利用向量法能求出點C到平面FDM的距離.
證明:(1)∵長方形ABCD,AD=2CD=4,M、N分別為AD、BC的中點,
將長方形ABCD沿MN折到MNFE位置,且使平面MNFE⊥平面ABCD.
∴DN⊥CM,CM⊥FN,
又DN∩FN=N,∴CM⊥平面DFN.
解:(2)以M為原點,MN為x軸,MA為y軸,ME為z軸,建立空間直角坐標(biāo)系,
則C(2,-2,0),D(0,-2,0),F(2,0,2),M(0,0,0),
=(2,-2,0),=(0,-2,0),=(2,0,2),
設(shè)平面FDM的法向量=(x,y,z),
則,取x=1,得=(1,0,-1),
∴點C到平面FDM的距離d===.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù) ,g(x)=2ln(x+m).
(1)當(dāng)m=0,存在x0∈[ ,e](e為自然對數(shù)的底數(shù)),使 ,求實數(shù)a的取值范圍;
(2)當(dāng)a=m=1時,設(shè)H(x)=xf(x)+g(x),在H(x)的圖象上是否存在不同的兩點A(x1 , y1),B(x2 , y2)(x1>x2>﹣1),使得H(x1)﹣H(x2)= ?請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】甲、乙、丙、丁四人進行選擇題解題比賽,已知每個選擇題選擇正確得分,否則得分.其測試結(jié)果如下:甲解題正確的個數(shù)小于乙解題正確的個數(shù),乙解題正確的個數(shù)小于丙解題正確的個數(shù),丙解題正確的個數(shù)小于丁解題正確的個數(shù);且丁解題正確的個數(shù)的倍小于甲解題正確的個數(shù)的倍,則這四人測試總得分數(shù)最少為( )
A. B. C. D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某公司共有職工1500人,其中男職工1050人,女職工450人.為調(diào)查該公司職工每周平均上網(wǎng)的時間,采用分層抽樣的方法,收集了300名職工每周平均上網(wǎng)時間的樣本數(shù)據(jù)(單位:小時)
男職工 | 女職工 | 總計 | |
每周平均上網(wǎng)時間不超過4個小時 | |||
每周平均上網(wǎng)時間超過4個小時 | 70 | ||
總計 | 300 |
(Ⅰ)應(yīng)收集多少名女職工樣本數(shù)據(jù)?
(Ⅱ)根據(jù)這300個樣本數(shù)據(jù),得到職工每周平均上網(wǎng)時間的頻率分布直方圖(如圖所示),其中樣本數(shù)據(jù)分組區(qū)間為:,,,,,.試估計該公司職工每周平均上網(wǎng)時間超過4小時的概率是多少?
(Ⅲ)在樣本數(shù)據(jù)中,有70名女職工的每周平均上網(wǎng)時間超過4個小時.請將每周平均上網(wǎng)時間與性別的列聯(lián)表補充完整,并判斷是否有95%的把握認為“該公司職工的每周平均上網(wǎng)時間與性別有關(guān)”
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】2018年6月份上合峰會在青島召開,面向高校招募志愿者,中國海洋大學(xué)海洋環(huán)境學(xué)院的8名同學(xué)符合招募條件并審核通過,其中大一、大二、大三、大四每個年級各2名.若將這8名同學(xué)分成甲乙兩個小組,每組4名同學(xué),其中大一的兩名同學(xué)必須分到同一組,則分到乙組的4名同學(xué)中恰有2名同學(xué)是來自于同一年級的分組方式共有__________種.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)為拋物線的準(zhǔn)線上一點,F為C 的焦點,點P在C上且滿足,若當(dāng)m取得最小值時,點P恰好在以原點為中心,F為焦點的雙曲線上,則該雙曲線的離心率為
A. B. 3 C. D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】為考察某種藥物預(yù)防疾病的效果,進行動物試驗,調(diào)查了 105 個樣本,統(tǒng)計結(jié)果為:服藥的共有 55 個樣本,服藥但患病的仍有 10 個樣本,沒有服藥且未患病的有 30個樣本.
(1)根據(jù)所給樣本數(shù)據(jù)完成 列聯(lián)表中的數(shù)據(jù);
(2)請問能有多大把握認為藥物有效?
(參考公式:獨立性檢驗臨界值表
概率 | 0.40 | 0.25 | 0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 |
0.708 | 1.323 | 2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
患病 | 不患病 | 合計 | |
服藥 | |||
沒服藥 | |||
合計 |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com