【題目】若對(duì)任意x∈(0,π),不等式ex﹣e﹣x>asinx恒成立,則實(shí)數(shù)a的取值范圍是( )
A.[﹣2,2]
B.(﹣∞,e]
C.(﹣∞,2]
D.(﹣∞,1]
【答案】C
【解析】解:令f(x)=ex﹣e﹣x﹣asinx, 當(dāng)a≤0時(shí),∵x∈(0,π),∴ex>e﹣x , sinx>0,∴ex﹣e﹣x>0,﹣asinx≥0,∴f(x)>0;
當(dāng)a>0時(shí),f′(x)=ex+e﹣x﹣acosx,
①若0<a≤2,∵x∈(0,π),∴ex+e﹣x>2,acosx<a≤2,f′(x)>0,∴f(x)在(0,π)上單調(diào)遞增,∴f(x)>f(0)=0,滿足題意;
②若a>2時(shí),f′(0)=2﹣a<0,f′( )>0,∴存在x0∈(0, ),使得f′(x0)=0.
令g(x)=ex+e﹣x﹣acosx,∵g′(x)=ex﹣e﹣x+asinx在(0, )上單調(diào)遞增,∴g′(x)>g′(0)=0,
∴g(x)=f′(x)=ex+e﹣x﹣acosx在(0, )上單調(diào)遞增,∴x∈(0,x0)時(shí),f′(x)<0,f(x)在(0,x0)上單調(diào)遞減,
∴f(x)<f(0)=0不滿足題意.
綜上所述,a∈(﹣∞,2],
故選:C.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】高一(1)班參加校生物競(jìng)賽學(xué)生的成績(jī)的莖葉圖和頻率分布直方圖都受到不同程度的破壞,但可見(jiàn)部分如下,據(jù)此解答如下問(wèn)題:
(1)求高一(1)班參加校生物競(jìng)賽的人數(shù)及分?jǐn)?shù)在[80,90)之間的頻數(shù),并計(jì)算頻率分布直方圖中[80,90)間的矩形的高;
(2)若要從分?jǐn)?shù)在[80,100]之間的學(xué)生中任選2人進(jìn)行某項(xiàng)研究,求至少有1人分?jǐn)?shù)在[90,100]之間的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在直角坐標(biāo)系中,以坐標(biāo)原點(diǎn)為極點(diǎn),x 軸的正半軸為極軸建立極坐標(biāo)系,己知曲線C1 的方程為ρ=2cosθ+2sinθ,直線 C2 的參數(shù)方程為(t 為參數(shù))
(Ⅰ)將 C1 的方程化為直角坐標(biāo)方程;
(Ⅱ)P 為 C1 上一動(dòng)點(diǎn),求 P 到直線 C2 的距離的最大值和最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在平面直角坐標(biāo)系xOy中,以原點(diǎn)O為極點(diǎn),x軸的非負(fù)半軸為極軸,建立極坐標(biāo)系,若直線l的參數(shù)方程為 (t為參數(shù),α為l的傾斜角),曲線E的極坐標(biāo)方程為ρ=4sinθ.射線θ=β,θ=β+ ,θ=β﹣ 與曲線E分別交于不同于極點(diǎn)的三點(diǎn)A、B、C.
(1)求證:|OB|+|OC|= |OA|;
(2)當(dāng)β= 時(shí),直線l過(guò)B、C兩點(diǎn),求y0與α的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在平面直角坐標(biāo)系中,已知圓:,圓:,動(dòng)點(diǎn)在直線:上(),過(guò)分別作圓,的切線,切點(diǎn)分別為,,若滿足的點(diǎn)有且只有一個(gè),則實(shí)數(shù)的值為______.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè)集合A={x∈R|x2+4x=0},B={x∈R|x2+2(a+1)x+a2-1=0,a∈R},若BA,求實(shí)數(shù)a的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖所示,等腰梯形ABCD的底角A等于60°.直角梯形ADEF所在的平面垂直于平面 ABCD,∠EDA=90°,且ED=AD=2AF=2AB=2.
(Ⅰ)證明:平面ABE⊥平面EBD;
(Ⅱ)點(diǎn)M在線段EF上,試確定點(diǎn)M的位置,使平面MAB與平面ECD所成的角的余弦值為 .
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】對(duì)于下列說(shuō)法正確的是( )
A.若f(x)是奇函數(shù),則f(x)是單調(diào)函數(shù)
B.命題“若x2﹣x﹣2=0,則x=1”的逆否命題是“若x≠1,則x2﹣x﹣2=0”
C.命題p:?x∈R,2x>1024,則¬p:?x0∈R,
D.命題“?x∈(﹣∞,0),2x<x2”是真命題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖長(zhǎng)方體中,,分別為棱,的中點(diǎn)
(1)求證:平面平面;
(2)請(qǐng)?jiān)诖痤}卡圖形中畫出直線與平面的交點(diǎn)(保留必要的輔助線),寫出畫法并計(jì)算的值(不必寫出計(jì)算過(guò)程).
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com