【題目】已知函數(shù).

() 1是關(guān)于x的方程的一個(gè)解,求t的值;

() 當(dāng)時(shí),解不等式;

()若函數(shù)在區(qū)間(-1,2]上有零點(diǎn),求t的取值范圍.

【答案】() () ()

【解析】

試題分析:)由,即可求得的值;

()當(dāng)時(shí),當(dāng)時(shí),,利用對(duì)數(shù)函數(shù)的單調(diào)性可得真數(shù)間的大小關(guān)系,注意對(duì)數(shù)函數(shù)的定義域;

()分情況討論:,上沒(méi)有零點(diǎn),當(dāng)時(shí),分內(nèi)有重根=0,解得的值;上只有一個(gè)零點(diǎn),且不是方程的重根時(shí);上有兩個(gè)相異實(shí)根三種情況,根據(jù)函數(shù)零點(diǎn)判定定理可得不等式,解出即可;

試題解析:1是關(guān)于的方程的解, ,又.

() 時(shí),,又,解集為:;

上沒(méi)有零點(diǎn).下面就時(shí)分三種情況討論:方程上有重根,解得;

上只有一個(gè)零點(diǎn),且不是方程的重根,則有,解得,又經(jīng)檢驗(yàn)時(shí),上都有零點(diǎn),.;上有兩個(gè)相異實(shí)根,則有:

解得,;綜合①②③可知的取值范圍為

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】甲、乙兩個(gè)籃球運(yùn)動(dòng)員互不影響地在同一位置投球,命中率分別為 與p,且乙投球2次均未命中的概率為
(Ⅰ)求乙投球的命中率p;
(Ⅱ)若甲投球1次,乙投球2次,兩人共命中的次數(shù)記為ξ,求ξ的分布列和數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè)定義在上的函數(shù), ),給出以下四個(gè)論斷:

的周期為;②在區(qū)間上是增函數(shù);③的圖象關(guān)于點(diǎn)對(duì)稱(chēng);④的圖象關(guān)于直線對(duì)稱(chēng).以其中兩個(gè)論斷作為條件,另兩個(gè)論斷作為結(jié)論,寫(xiě)出你認(rèn)為正確的一個(gè)命題(寫(xiě)成“”的形式)__________.(其中用到的論斷都用序號(hào)表示)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知數(shù)列{an}的前n項(xiàng)和Sn , 若an+1+(﹣1)nan=n,則S40=

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】“累積凈化量(CCM)”是空氣凈化器質(zhì)量的一個(gè)重要衡量指標(biāo),它是指空氣凈化器從開(kāi)始使用到凈化效率為50%時(shí)對(duì)顆粒物的累積凈化量,以克表示.根據(jù)GB/T18801﹣2015《空氣凈化器》國(guó)家標(biāo)準(zhǔn),對(duì)空氣凈化器的累積凈化量(CCM)有如下等級(jí)劃分:

累積凈化量(克)

(3,5]

(5,8]

(8,12]

12以上

等級(jí)

P1

P2

P3

P4

為了了解一批空氣凈化器(共2000臺(tái))的質(zhì)量,隨機(jī)抽取n臺(tái)機(jī)器作為樣本進(jìn)行估計(jì),已知這n臺(tái)機(jī)器的
累積凈化量都分布在區(qū)間(4,14]中,按照(4,6],(6,8],(8,10],(10,12],(12,14],均勻分組,其中累積凈化量在(4,6]的所有數(shù)據(jù)有:4.5,4.6,5.2,5.7和5.9,并繪制了如下頻率分布直方圖.

(Ⅰ)求n的值及頻率分布直方圖中的x值;
(Ⅱ)以樣本估計(jì)總體,試估計(jì)這批空氣凈化器(共2000臺(tái))中等級(jí)為P2的空氣凈化器有多少臺(tái)?
(Ⅲ)從累積凈化量在(4,6]的樣本中隨機(jī)抽取2臺(tái),求恰好有1臺(tái)等級(jí)為P2的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】1將根式化為分式指數(shù)冪的形式;

2的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知數(shù)集X={x1,x2,xn}(其中xi>0,i=1,2,…,n,n≥3),若對(duì)任意的xk∈X(k=1,2,…,n),都存在xi,xj∈Xxi≠xj),使得下列三組向量中恰有一組共線:

①向量(xixk)與向量(xk,xj);②向量(xi,xj)與向量(xjxk);③向量(xkxi)與向量(xi,xj),則稱(chēng)X具有性質(zhì)P。例如{1,2,4}具有性質(zhì)P。

(1)若{1,3,x)具有性質(zhì)P,則x的取值為________;

(2)若數(shù)集{1,3,x1,x2}具有性質(zhì)P,則x1+x2的最大值與最小值之積為________

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某某車(chē)站在春運(yùn)期間為了改進(jìn)服務(wù),隨機(jī)抽樣調(diào)查了100名旅客從開(kāi)始在購(gòu)票窗口排隊(duì)到購(gòu)到車(chē)票所用的時(shí)間t(以下簡(jiǎn)稱(chēng)購(gòu)票用時(shí),單位:min).下面是這次抽樣的頻率分布表和頻率分布直方圖,解答下列問(wèn)題:

分組

頻數(shù)

頻率

一組

0≤t<5

0

0

二組

5≤t<10

10

三組

10≤t<15

10

0.10

四組

15≤t<20

五組

20≤t<25

30

0.30

合計(jì)

100

1.00

(1)這次抽樣的樣本容量是多少?

(2)在表中填寫(xiě)缺失的數(shù)據(jù)并補(bǔ)全頻率分布直方圖.

(3)旅客購(gòu)票用時(shí)的平均數(shù)可能落在哪一個(gè)小組?

(4)若每增加一個(gè)購(gòu)票窗口可使平均購(gòu)票用時(shí)縮短5 min,要使平均購(gòu)票用時(shí)不超過(guò)10 min,那么你估計(jì)最少要增加幾個(gè)窗口?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】從某居民區(qū)隨機(jī)抽取10個(gè)家庭,獲得第個(gè)家庭的月收入(單位:千元)與月儲(chǔ)蓄(單位:千元)的數(shù)據(jù)資料,算得,

,

(1).求家庭的月儲(chǔ)蓄對(duì)月收入的線性回歸方程;

(2).判斷變量之間的正相關(guān)還是負(fù)相關(guān);

(3).若該居民區(qū)某家庭月收入為7千元,預(yù)測(cè)該家庭的月儲(chǔ)蓄.

附:回歸直線的斜率和截距的最小二乘估計(jì)公式分別為

查看答案和解析>>

同步練習(xí)冊(cè)答案