某城市自西向東和自南向北的兩條主干道的東南方位有一塊空地,市規(guī)劃部門計(jì)劃利用它建設(shè)一個(gè)供市民休閑健身的小型綠化廣場,如下圖所示是步行小道設(shè)計(jì)方案示意圖,其中,Ox,Oy分別表示自西向東,自南向北的兩條主干道.設(shè)計(jì)方案是自主干道交匯點(diǎn)O處修一條步行小道,小道為拋物線y=x2的一段,在小道上依次以點(diǎn)P1(x1,y1),P2(x2,y2),…,Pn(xnyn)(n≥10,n∈N*)為圓心,修一系列圓型小道,這些圓型小道與主干道Ox相切,且任意相鄰的兩圓彼此外切,若x1=1(單位:百米)且xn+1<xn
(1)記以Pn為圓心的圓與主干道Ox切于An點(diǎn),證明:數(shù)列{
1
xn
}
是等差數(shù)列,并求|OAn|關(guān)于n的表達(dá)式;
(2)記⊙Pn的面積為Sn,根據(jù)以往施工經(jīng)驗(yàn)可知,面積為S的圓型小道的施工工時(shí)為
πS
(單位:周).試問5周時(shí)間內(nèi)能否完成前n個(gè)圓型小道的修建?請(qǐng)說明你的理由.
分析:(1)依題意可設(shè)⊙pn的半徑rn=yn=xn2,由題意可得|pnpn+1|=rn+rn+1,代入點(diǎn)的坐標(biāo)整理可得
1
xn+1
-
1
xn
=2
,結(jié)合等差數(shù)列的通項(xiàng)公式可求
1
xn
,進(jìn)而可求xn,即可求解
(2)由sn=πrn2=πxn4=
π
(2n-1)4
,代入Tn=
πs1
+
πs2
+…+
πsn
=π[
1
12
+
1
32
+…+
1
(2n-1)2
]
,利用放縮法及裂項(xiàng)即可求解和,可求
解答:解:(1)依題意可設(shè)⊙pn的半徑rn=yn=xn2
∵⊙pn與⊙pn+1相切
∴|pnpn+1|=rn+rn+1
(xn-xn+1)2
+
(yn-yn+1)2
=yn+yn+1
兩邊平方整理可得,(xn-xn+1)2=4xn2xn+12
∵xn>xn+1>0
∴xn-xn+1=2xnxn+1
1
xn+1
-
1
xn
=2

∴{
1
xn
}是以1為首項(xiàng),以2為公差的等差數(shù)列
1
xn
=1+2(n-1)
=2n-1
xn=
1
2n-1
|OAn|=
1
2n-1

(2)∵sn=πrn2=πxn4=
π
(2n-1)4

設(shè)前幾個(gè)圓型小道的施工總時(shí)為Tn=
πs1
+
πs2
+…+
πsn

=π[
1
12
+
1
32
+…+
1
(2n-1)2
]

π[1+
1
1×3
+
1
3×5
+…+
1
(2n-3)(2n-1)
]

=π[1+
1
2
(1-
1
3
+
1
3
-
1
5
+…+
1
2n-3
-
1
2n-1
]


=π[1+
1
2
(1-
1
2n-1
)]
=
3n-2
2n-1
π
2
<5
故5周內(nèi)完成修建工作
點(diǎn)評(píng):本題主要考查了圓外切性質(zhì)的應(yīng)用,利用數(shù)列的遞推公式構(gòu)造等差數(shù)列求解通項(xiàng)公式,數(shù)列的裂項(xiàng)求和及放縮法在不等式中的應(yīng)用
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:2014屆湖北省高二9月調(diào)研考試?yán)砜茢?shù)學(xué)試卷(解析版) 題型:解答題

 (本小題滿分14分)某城市自西向東和自南向北的兩條主干道的東南方位有一塊空地市規(guī)劃部門計(jì)劃利用它建設(shè)一個(gè)供市民休閑健身的小型綠化廣場,如下圖所示是步行小道設(shè)計(jì)方案示意圖,

其中,分別表示自西向東,自南向北的兩條主干道.設(shè)計(jì)方案是自主干道交匯點(diǎn)處修一條步行小道,小道為拋物線的一段,在小道上依次以點(diǎn)

為圓心,修一系列圓型小道,這些圓型小道與主干道相切,且任意相鄰的兩圓彼此外切,若(單位:百米)且.

(1)記以為圓心的圓與主干道切于點(diǎn),證明:數(shù)列是等差數(shù)列,并求關(guān)于的表達(dá)式;

(2)記的面積為,根據(jù)以往施工經(jīng)驗(yàn)可知,面積為的圓型小道的施工工時(shí)為(單位:周).試問5周時(shí)間內(nèi)能否完成前個(gè)圓型小道的修建?請(qǐng)說明你的理由.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2012-2013學(xué)年福建省泉州市安溪八中高二(上)期中數(shù)學(xué)試卷(文科)(解析版) 題型:解答題

某城市自西向東和自南向北的兩條主干道的東南方位有一塊空地,市規(guī)劃部門計(jì)劃利用它建設(shè)一個(gè)供市民休閑健身的小型綠化廣場,如下圖所示是步行小道設(shè)計(jì)方案示意圖,其中,Ox,Oy分別表示自西向東,自南向北的兩條主干道.設(shè)計(jì)方案是自主干道交匯點(diǎn)O處修一條步行小道,小道為拋物線y=x2的一段,在小道上依次以點(diǎn)為圓心,修一系列圓型小道,這些圓型小道與主干道Ox相切,且任意相鄰的兩圓彼此外切,若x1=1(單位:百米)且xn+1<xn
(1)記以Pn為圓心的圓與主干道Ox切于An點(diǎn),證明:數(shù)列是等差數(shù)列,并求|OAn|關(guān)于n的表達(dá)式;
(2)記⊙Pn的面積為Sn,根據(jù)以往施工經(jīng)驗(yàn)可知,面積為S的圓型小道的施工工時(shí)為(單位:周).試問5周時(shí)間內(nèi)能否完成前n個(gè)圓型小道的修建?請(qǐng)說明你的理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2012-2013學(xué)年山東省濟(jì)寧市魚臺(tái)一中高二(上)9月月考數(shù)學(xué)試卷(理科)(解析版) 題型:解答題

某城市自西向東和自南向北的兩條主干道的東南方位有一塊空地,市規(guī)劃部門計(jì)劃利用它建設(shè)一個(gè)供市民休閑健身的小型綠化廣場,如下圖所示是步行小道設(shè)計(jì)方案示意圖,其中,Ox,Oy分別表示自西向東,自南向北的兩條主干道.設(shè)計(jì)方案是自主干道交匯點(diǎn)O處修一條步行小道,小道為拋物線y=x2的一段,在小道上依次以點(diǎn)為圓心,修一系列圓型小道,這些圓型小道與主干道Ox相切,且任意相鄰的兩圓彼此外切,若x1=1(單位:百米)且xn+1<xn
(1)記以Pn為圓心的圓與主干道Ox切于An點(diǎn),證明:數(shù)列是等差數(shù)列,并求|OAn|關(guān)于n的表達(dá)式;
(2)記⊙Pn的面積為Sn,根據(jù)以往施工經(jīng)驗(yàn)可知,面積為S的圓型小道的施工工時(shí)為(單位:周).試問5周時(shí)間內(nèi)能否完成前n個(gè)圓型小道的修建?請(qǐng)說明你的理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2012-2013學(xué)年湖北省孝感高中高二(上)9月調(diào)考數(shù)學(xué)試卷(理科)(解析版) 題型:解答題

某城市自西向東和自南向北的兩條主干道的東南方位有一塊空地,市規(guī)劃部門計(jì)劃利用它建設(shè)一個(gè)供市民休閑健身的小型綠化廣場,如下圖所示是步行小道設(shè)計(jì)方案示意圖,其中,Ox,Oy分別表示自西向東,自南向北的兩條主干道.設(shè)計(jì)方案是自主干道交匯點(diǎn)O處修一條步行小道,小道為拋物線y=x2的一段,在小道上依次以點(diǎn)為圓心,修一系列圓型小道,這些圓型小道與主干道Ox相切,且任意相鄰的兩圓彼此外切,若x1=1(單位:百米)且xn+1<xn
(1)記以Pn為圓心的圓與主干道Ox切于An點(diǎn),證明:數(shù)列是等差數(shù)列,并求|OAn|關(guān)于n的表達(dá)式;
(2)記⊙Pn的面積為Sn,根據(jù)以往施工經(jīng)驗(yàn)可知,面積為S的圓型小道的施工工時(shí)為(單位:周).試問5周時(shí)間內(nèi)能否完成前n個(gè)圓型小道的修建?請(qǐng)說明你的理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案