18.已知集合A={x|1<x<3},集合B={x|2m<x<1-m}.
(1)若m=-1求A∩B;
(2)若A⊆B,求實(shí)數(shù)m的取值范圍.

分析 (1)先求出集合A,集合B,由此利用交集定義能求出A∩B.
(2)由集合A={x|1<x<3},集合B={x|2m<x<1-m},A⊆B,利用子集性質(zhì)能求出實(shí)數(shù)m的取值范圍.

解答 (本題12分)
解:(1)m=1時(shí),集合A={x|1<x<3},集合B={x|-2<x<2}.
∴A∩B={x|1<x<2}.
(2)∵集合A={x|1<x<3},集合B={x|2m<x<1-m},A⊆B,
∴$\left\{\begin{array}{l}1-m>2m\\ 2m≤1\\ 1-m≥3\end{array}\right.$,解得m≤-2,
即實(shí)數(shù)m的取值范圍為(-∞,-2].

點(diǎn)評(píng) 本題考查交集的求法,考查實(shí)數(shù)取值范圍的求法,是基礎(chǔ)題,解題時(shí)要認(rèn)真審題,注意交集定義、子集性質(zhì)的合理運(yùn)用.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

8.已知函數(shù)f(x)=2x2+(2-m)x-m,g(x)=x2-x+2m.
(1)若m=1,求不等式f(x)>0的解集;
(2)若m>0,求關(guān)于x的不等式f(x)≤g(x)的解集.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

9.某百貨公司1~6月份的銷(xiāo)售量x與利潤(rùn)y的統(tǒng)計(jì)數(shù)據(jù)如表:
月份123456
銷(xiāo)售量x(萬(wàn)件)1011131286
利潤(rùn)y(萬(wàn)元)222529261612
(1)根據(jù)2~5月份的統(tǒng)計(jì)數(shù)據(jù),求出y關(guān)于x的回歸直線方程$\widehat{y}$=$\widehat$x+$\widehat{a}$;
(2)若由回歸直線方程得到的估計(jì)數(shù)據(jù)與剩下的檢驗(yàn)數(shù)據(jù)的誤差均不超過(guò)2萬(wàn)元,則認(rèn)為得到的回歸直線方程是理想的,試問(wèn)所得回歸直線方程是否理想?
(參考公式:$\widehat$=$\frac{\sum_{i=1}^{n}({x}_{i}-\overline{x})({y}_{i}-\overline{y})}{\sum_{i=1}^{n}({x}_{i}-\overline{x})^{2}}$)=$\frac{\sum_{i=1}^{n}{x}_{i}{y}_{i}-n\overline{x}\overline{y}}{\sum_{i=1}^{n}{{x}_{i}}^{2}-n{\overline{x}}^{2}}$,$\widehat{a}$=$\overline{y}$-b$\overline{x}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

6.函數(shù)f(x)=aln(x2+1)+bx,g(x)=bx2+2ax+b,(a>0,b>0).已知方程g(x)=0有兩個(gè)不同的非零實(shí)根x1,x2
(1)求證:x1+x2<-2;
(2)若實(shí)數(shù)λ滿足等式f(x1)+f(x2)+3a-λb=0,求λ的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

13.已知函數(shù)f(x)(x∈R)滿足f(x+π)=f(x)+cosx,當(dāng)0≤x<π時(shí),f(x)=-1,則f($\frac{2017π}{3}$)=(  )
A.$\frac{1}{2}$B.$-\frac{1}{2}$C.$\frac{{\sqrt{3}}}{2}$D.-1

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

3.作圖并求值域,單調(diào)區(qū)間:y=|x-2|-|x+2|

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

10.已知等比數(shù)列{an}中,an+1=36,an+3=m,an+5=4,則圓錐曲線$\frac{{x}^{2}}{m}$+$\frac{{y}^{2}}{3}$=1的離心率為( 。
A.$\sqrt{5}$B.$\frac{\sqrt{3}}{2}$C.$\sqrt{5}$或$\frac{\sqrt{3}}{2}$D.$\frac{\sqrt{5}}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

7.已知兩點(diǎn)A(3,2),B(-1,2),圓C以線段AB為直徑.
(Ⅰ)求圓C的方程;
(Ⅱ)求過(guò)點(diǎn)M(3,1)的圓C的切線方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

8.已知函數(shù)f(x)=|x-a|+|2x-1|.
(Ⅰ)當(dāng)a=1時(shí),解不等式f(x)≥2;
(Ⅱ)求證:$f(x)≥|a-\frac{1}{2}|$.

查看答案和解析>>

同步練習(xí)冊(cè)答案