如圖所示,已知四邊形ABCD是正方形,SA⊥平面ABCD,過(guò)A且垂直于SC的平面分別交SBSC、SD于E、F、G,求證:AE⊥SE.?

      

證明:要證AE⊥SE,?

       只需證AE⊥面SBC,?

       只要證明AE⊥SC且AE⊥BC,?

       只要證SC⊥平面AEFG,(已知)且BC⊥平面SAB,?

       要證BC⊥平面SAB,?

       只要證BC⊥SA且BC⊥AB.?

       這由已知SA⊥平面ABCD和ABCD是正方形可保證.?

       ∴AE⊥SE.?

       故原命題成立.?

       溫馨提示:本題用分析法證明.要注意到步步可逆推.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:044

如圖所示,已知四邊形ABCD的對(duì)角線互相平分,點(diǎn)O是對(duì)角線ACBD的交點(diǎn).求證:四邊形ABCD是平行四邊形.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:數(shù)學(xué)教研室 題型:044

如圖所示,已知四邊形ABCD的對(duì)角線互相平分,點(diǎn)O是對(duì)角線ACBD的交點(diǎn).求證:四邊形ABCD是平行四邊形.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:黃岡中學(xué) 高一數(shù)學(xué)(下冊(cè))、第五章 平面向量單元(5.1~5.5)測(cè)試卷 題型:044

如圖所示,已知四邊形OADB是以向量為邊的平行四邊形,其中,.試以向量a,b為一組基底,表示出向量、、

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:數(shù)學(xué)教研室 題型:044

如圖所示,已知四邊形ABCD、EADMMDCF都是邊長(zhǎng)為a的正方形,點(diǎn)P、Q分別是EDAC的中點(diǎn),求:

1)異面直線PMFQ所成的角;

2)四面體P-EFB的體積;

3)異面直線PMFQ的距離.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2013-2014學(xué)年江西贛州四所重點(diǎn)中學(xué)高三上學(xué)期期末聯(lián)考文數(shù)學(xué)試卷(解析版) 題型:解答題

如圖所示,已知四邊形ABCD是正方形,EA⊥平面ABCD,PD∥EA,AD=PD=2EA=2,F(xiàn),G,H分別為BP,BE,PC的中點(diǎn)。

(Ⅰ)求證:平面FGH⊥平面AEB;

(Ⅱ)在線段PC上是否存在一點(diǎn)M,使PB⊥平面EFM?若存在,求出線段PM的長(zhǎng);若不存在,請(qǐng)說(shuō)明理由.

 

查看答案和解析>>

同步練習(xí)冊(cè)答案