19.函數(shù)y=x2-2ax-4,x∈[0,3],(a∈R)
(1)若a=1,求該函數(shù)在x∈[0,3]上的最大值和最小值;
(2)若該函數(shù)在[0,3]上是單調(diào)函數(shù),求a的取值范圍.

分析 (1)根據(jù)二次函數(shù)的性質(zhì)即可求出,
(2)分類討論,根據(jù)對(duì)稱軸即可求出a的取值范圍.

解答 解:(1)a=1,y=x2-2x-4,對(duì)稱軸x=1,又0≤x≤3,最小值為f(1)=-5,最大值為f(3)=-1;
(2)y=x2-2ax-4,對(duì)稱軸x=a,若函數(shù)y在[0,3]上遞增,則a≤0,若函數(shù)y在[0,3]上遞減,則a≥3,
故a≤0或a≥3.

點(diǎn)評(píng) 本題考查了二次函數(shù)的性質(zhì)以及求函數(shù)的最值問題,以及參數(shù)的取值范圍,屬于基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

9.直線l斜率的在[-$\sqrt{3}$,$\frac{\sqrt{3}}{3}$]上取值時(shí),傾斜角的范圍是[0,$\frac{π}{6}$]∪[$\frac{2π}{3}$,π).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

10.(文)甘肅平?jīng)觥案晃臉s”試題研究小組在總共的200000套試卷中近期對(duì)其3000份試卷進(jìn)行抽查,發(fā)現(xiàn)有2250套試卷緊貼時(shí)政、與時(shí)俱進(jìn),500套試卷沒有答案解析,295套試卷命題存在超綱和術(shù)語(yǔ)錯(cuò)誤.那么在總的試卷中不規(guī)范的試卷有50000套.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.函數(shù)f(x)=Asin(ωx+φ),(ω>0,|φ|<π)在一個(gè)周期內(nèi)的圖象如圖所示,為了得到y(tǒng)=2sin2x的圖象,只需將f(x)的圖象( 。
A.向右平移$\frac{5π}{6}$個(gè)單位長(zhǎng)度B.向左平移$\frac{5π}{6}$個(gè)單位長(zhǎng)度
C.向右平移$\frac{2π}{3}$個(gè)單位長(zhǎng)度D.向左平移$\frac{2π}{3}$個(gè)單位長(zhǎng)度

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

14.$\sqrt{\frac{1}{8}}•\root{3}{{2\sqrt{2}}}$=$\frac{1}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

4.函數(shù)Y=$\frac{sinx-cosx}{2cosx}$在點(diǎn)${x_0}=\frac{π}{3}$處的導(dǎo)數(shù)等于2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

11.(1)在(1-x)5+(1-x)6+(1-x)7+(1-x)8的展開式中,求含x3的項(xiàng)的系數(shù);
(2)若(2-x)6展開式中第二項(xiàng)小于第一項(xiàng),但不小于第三項(xiàng),求x的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.對(duì)于序列A0:a0,a1,a2,…,an(n∈N*),實(shí)施變換T得序列A1:a1+a2,a2+a3,…,an-1+an,記作A1=T(A0):對(duì)A1繼續(xù)實(shí)施變換T得序列A2=T(A1)=T(T(A0)),記作A2=T2(A0);…;An-1=Tn-1(A0).最后得到的序列An-1只有一個(gè)數(shù),記作S(A0).
(Ⅰ)若序列A0為1,2,3,求S(A0);
(Ⅱ)若序列A0為1,2,…,n,求S(A0);
(Ⅲ)若序列A和B完全一樣,則稱序列A與B相等,記作A=B,若序列B為序列A0:1,2,…,n的一個(gè)排列,請(qǐng)問:B=A0是S(B)=S(A0)的什么條件?請(qǐng)說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

2.設(shè)命題P:關(guān)于x的不等式${a^{{x^2}-ax-2{a^2}}}$>1(a>0且a≠1)的解集為{x|-a<x<2a};命題Q:f(x)=lg(ax2-x+a)的值域?yàn)镽.如果P且Q為真,則實(shí)數(shù)a的取值范圍是(0,$\frac{1}{2}$].

查看答案和解析>>

同步練習(xí)冊(cè)答案