10.已知數(shù)列{an}滿足a1=1,且對任意的m,n∈N*,都有am+n=am+an+mn,則$\frac{1}{a_1}$+$\frac{1}{a_2}$+$\frac{1}{a_3}$+…+$\frac{1}{{{a_{2017}}}}$=(  )
A.$\frac{4032}{2016}$B.$\frac{4034}{2017}$C.$\frac{4032}{2018}$D.$\frac{4034}{2018}$

分析 推導(dǎo)出an+1-an=1+n,從而利用累加法得an=$\frac{n(n+1)}{2}$,進(jìn)而有$\frac{1}{{a}_{n}}$=$\frac{2}{n(n+1)}$=2($\frac{1}{n}-\frac{1}{n+1}$),由此利用裂項(xiàng)求和法能求出$\frac{1}{a_1}$+$\frac{1}{a_2}$+$\frac{1}{a_3}$+…+$\frac{1}{{{a_{2017}}}}$的值.

解答 解:因?yàn)閍n+m=am+an+mn對任意的m,n∈N*都成立
所以an+1=an+a1+n=1+n
即an+1-an=1+n
所以a2-a1=2
   a3-a2=3

   an-an-1=n
把上面n-1個式子相加可得,an-a1=2+3+4+…+n
所以an=1+2+3+…+n=$\frac{n(n+1)}{2}$,
從而有$\frac{1}{{a}_{n}}$=$\frac{2}{n(n+1)}$=2($\frac{1}{n}-\frac{1}{n+1}$,
所以$\frac{1}{a_1}$+$\frac{1}{a_2}$+$\frac{1}{a_3}$+…+$\frac{1}{{{a_{2017}}}}$
=2(1-$\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+…+\frac{1}{2017}-\frac{1}{2018}$)
=$\frac{4034}{2018}$.
故選:D.

點(diǎn)評 本題考查數(shù)列的通項(xiàng)公式的求法,是中檔題,解題時要認(rèn)真審題,注意累加法和裂項(xiàng)求和法的合理運(yùn)用.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.在△ABC中,b=2,A=$\frac{π}{3}$,B=$\frac{π}{4}$,則a的值為( 。
A.$\sqrt{3}$B.$\sqrt{6}$C.$2\sqrt{3}$D.$\frac{{\sqrt{6}}}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.已知函數(shù)f(x)=ax(0<a且a≠1)滿足f(2)=81,則f(-$\frac{1}{2}$)=(  )
A.±1B.±3C.$\frac{1}{3}$D.3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.設(shè)a>0,b>0,若$\sqrt{2}$是4a與2b的等比中項(xiàng),則$\frac{1}{a}$+$\frac{2}$的最小值為( 。
A.2$\sqrt{2}$B.8C.9D.10

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.?dāng)?shù)列{an}滿足a1=$\frac{1}{2}$,an+1=$\frac{1}{{1-{a_n}}}$(n∈N*),a2017=(  )
A.$\frac{1}{2}$B.2C.-1D.1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.下列四個命題中,正確的有(  )
①兩個變量間的相關(guān)系數(shù)r越小,說明兩變量間的線性相關(guān)程度越低;
②命題“?x∈R,使得x2+x+1<0”的否定是:“對?x∈R,均有x2+x+1>0”;
③命題“p∧q為真”是命題“p∨q為真”的必要不充分條件;
④若函數(shù)f(x)=x3+3ax2+bx+a2在x=-1有極值0,則a=2,b=9或a=1,b=3.
A.0 個B.1 個C.2 個D.3個

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

12.如圖,在平行四邊形ABCD中,BD=4$\sqrt{3}$,PD⊥平面ABCD,平面PBC⊥平面PBD,二面角P-BC-D為60°
(1)求證:BC⊥BD;
(2)求點(diǎn)A到平面PBC的距離.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

9.已知函數(shù)f(x)=|2x-1|-x,
(1)用分段函數(shù)的形式表示該函數(shù),并畫出該函數(shù)的圖象;
(2)寫出該函數(shù)的值域、單調(diào)區(qū)間(不要求證明);
(3)若對任意x∈R,不等式|2x-1|≥a+x恒成立,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

10.如圖(a),在直角梯形ABCD中,∠ADC=90°,CD∥AB,AB=8,AD=CD=4,將△ADC沿AC折起,使平面ADC⊥平面ABC,得到幾何體D-ABC,如圖(b)所示.
(1)求證:BC⊥平面ACD; 
(2)求幾何體D-ABC的體積.

查看答案和解析>>

同步練習(xí)冊答案