【題目】設(shè)是拋物線上的一點(diǎn),拋物線在點(diǎn)處的切線方程為.

(1)求的方程;

(2)已知過點(diǎn)的兩條不重合直線的斜率之積為,且直線分別交拋物線,兩點(diǎn)和,兩點(diǎn).是否存在常數(shù)使得成立?若存在,求出的值;若不存在,請說明理由.

【答案】(1);(2)

【解析】

1)通過直線與拋物線相切,,求出拋物線方程.


2)將所求的轉(zhuǎn)化為

直曲聯(lián)立得到,利用弦長公式表示出,同理得到,帶入上式整理化簡可得所求.

(1)【解法一】由.

由題意得,因?yàn)?/span>,所以.

故拋物線

【解法二】

設(shè),由,.

解得.

故拋物線.

(2)假設(shè)存在常數(shù)使得成立,

.

由題意知,,的斜率存在且均不為零,

設(shè)的方程為,則由,消去得,.

設(shè),,則,.

所以 .

(也可以由,得到.)

因?yàn)橹本,的斜率之積為,所以.

所以.

所以,存在常數(shù)使得成立.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】分形幾何學(xué)是一門以不規(guī)則幾何形態(tài)為研究對象的幾何學(xué).分形的外表結(jié)構(gòu)極為復(fù)雜,但其內(nèi)部卻是有規(guī)律可尋的.一個(gè)數(shù)學(xué)意義上分形的生成是基于一個(gè)不斷迭代的方程式,即一種基于遞歸的反饋系統(tǒng).下面我們用分形的方法來得到一系列圖形,如圖1,線段的長度為a,在線段上取兩個(gè)點(diǎn),,使得,以為一邊在線段的上方做一個(gè)正六邊形,然后去掉線段,得到圖2中的圖形;對圖2中的最上方的線段作相同的操作,得到圖3中的圖形;依此類推,我們就得到了以下一系列圖形:

記第個(gè)圖形(圖1為第1個(gè)圖形)中的所有線段長的和為,現(xiàn)給出有關(guān)數(shù)列的四個(gè)命題:

①數(shù)列是等比數(shù)列;

②數(shù)列是遞增數(shù)列;

③存在最小的正數(shù),使得對任意的正整數(shù) ,都有

④存在最大的正數(shù),使得對任意的正整數(shù),都有

其中真命題的序號是________________(請寫出所有真命題的序號).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系中,對于直線和點(diǎn),記,若,則稱點(diǎn),被直線l分隔,若曲線C與直線l沒有公共點(diǎn),且曲線C上存在點(diǎn),被直線l分隔,則稱直線l為曲線C的一條分隔線.

1)求證:點(diǎn)被直線分隔;

2)若直線是曲線的分隔線,求實(shí)數(shù)的取值范圍;

3)動(dòng)點(diǎn)M到點(diǎn)的距離與到y軸的距離之積為1,設(shè)點(diǎn)M的軌跡為E,求E的方程,并證明y軸為曲線E的分隔線.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】我國古代數(shù)學(xué)名著《算法統(tǒng)宗》中有如下問題:“遠(yuǎn)望巍巍塔七層,紅光點(diǎn)點(diǎn)倍加增,共燈三百八十一,請問尖頭幾盞燈?”意思是:一座7層塔共掛了381盞燈,且相鄰兩層中的下一層燈數(shù)是上一層燈數(shù)的2倍,則塔的頂層共有燈( )

A. 1盞 B. 3盞 C. 5盞 D. 9盞

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】我國南北朝時(shí)期的數(shù)學(xué)家祖暅提出了計(jì)算體積的祖暅原理:“冪勢既同,則積不容異!币馑际牵簝蓚(gè)等高的幾何體若在所有等高處的水平截面的面積相等,則這兩個(gè)幾何體的體積相等.已知曲線,直線為曲線在點(diǎn)處的切線.如圖所示,陰影部分為曲線、直線以及軸所圍成的平面圖形,記該平面圖形繞軸旋轉(zhuǎn)一周所得的幾何體為.給出以下四個(gè)幾何體:

圖①是底面直徑和高均為的圓錐;

圖②是將底面直徑和高均為的圓柱挖掉一個(gè)與圓柱同底等高的倒置圓錐得到的幾何體;

圖③是底面邊長和高均為的正四棱錐;

圖④是將上底面直徑為,下底面直徑為,高為的圓臺挖掉一個(gè)底面直徑為,高為的倒置圓錐得到的幾何體.

根據(jù)祖暅原理,以上四個(gè)幾何體中與的體積相等的是( )

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在四棱錐P-ABCD中,底面ABCD為正方形,平面PAD⊥平面ABCD,點(diǎn)M在線段PPD//平面MAC,PA=PD=,AB=4.

(I)求證:MPB的中點(diǎn);

(II)求二面角B-PD-A的大小;

(III)求直線MC與平面BDP所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)函數(shù),其中.

1)討論的極值點(diǎn)的個(gè)數(shù);

2)若,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某學(xué)校舉行知識競賽,第一輪選拔共設(shè)有A、B、C、D四個(gè)問題,規(guī)則如下:

①每位參加者記分器的初始分均為10分,答對問題A、B、C、D分別加1分、2分、3分、6分,答錯(cuò)任一題減2分;

②每回答一題,記分器顯示累計(jì)分?jǐn)?shù),當(dāng)累計(jì)分?jǐn)?shù)小于8分時(shí),答題結(jié)束,淘汰出局;當(dāng)累計(jì)分?jǐn)?shù)大于或等于14分時(shí),答題結(jié)束,進(jìn)入下一輪;當(dāng)答完四題,累計(jì)分?jǐn)?shù)仍不足14分時(shí),答題結(jié)束,淘汰出局;

③每位參加者按問題A、B、C、D順序作答,直至答題結(jié)束.

假設(shè)甲同學(xué)對問題A、B、C、D回答正確的概率依次為、、,且各題回答正確與否相互之間沒有影響.

(1)求甲同學(xué)能進(jìn)入下一輪的概率;

(2)用ξ表示甲同學(xué)本輪答題結(jié)束時(shí)答題的個(gè)數(shù),求ξ的分布列和數(shù)學(xué)期望Εξ.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖所示的多面體是由一個(gè)直平行六面體被平面所截后得到的,其中,.

1)求證:平面平面;

2)求直線與平面所成角的正弦值.

查看答案和解析>>

同步練習(xí)冊答案