【題目】函數(shù)f(x)=|x|﹣2|x+3|.
(1)解不等式f(x)≥2;
(2)若存在x∈R使不等式f(x)﹣|3t﹣2|≥0成立,求參數(shù)t的取值范圍.
【答案】
(1)解: ,
或 或 ,
∴﹣4≤x<﹣3或 或.
∴不等式f(x)≥2的解集為 .
(2)解:∵f(x)max=3∴只需f(x)max﹣|3t﹣2|≥0,即3﹣|3t﹣2|≥0,
亦即|3t﹣2|≤3,解之得: ,
∴參數(shù)t的取值范圍 .
【解析】去掉絕對(duì)值符號(hào),化簡(jiǎn)函數(shù)的解析式為分段函數(shù),(1)不等式轉(zhuǎn)化為 或 或 ,求出解集即可.(2)求出f(x)max=3,轉(zhuǎn)化不等式為f(x)max﹣|3t﹣2|≥0,然后求解參數(shù)t的取值范圍.
【考點(diǎn)精析】本題主要考查了絕對(duì)值不等式的解法的相關(guān)知識(shí)點(diǎn),需要掌握含絕對(duì)值不等式的解法:定義法、平方法、同解變形法,其同解定理有;規(guī)律:關(guān)鍵是去掉絕對(duì)值的符號(hào)才能正確解答此題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知拋物線x2=2py(p>0)的頂點(diǎn)到焦點(diǎn)的距離為1,過(guò)點(diǎn)P(0,p)作直線與拋物線交于A(x1 , y1),
B(x2 , y2)兩點(diǎn),其中x1>x2 .
(1)若直線AB的斜率為 ,過(guò)A,B兩點(diǎn)的圓C與拋物線在點(diǎn)A處有共同的切線,求圓C的方程;
(2)若 =λ ,是否存在異于點(diǎn)P的點(diǎn)Q,使得對(duì)任意λ,都有 ⊥( ﹣λ ),若存在,求Q點(diǎn)坐標(biāo);不存在,說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知袋子中放有大小和形狀相同的小球若干,其中標(biāo)號(hào)為0的小球1個(gè),標(biāo)號(hào)為1的小球1個(gè),標(biāo)號(hào)為2的小球個(gè).若從袋子中隨機(jī)抽取1個(gè)小球,取到標(biāo)號(hào)為2的小球的概率是.
(1)求的值;
(2)從袋子中有放回地隨機(jī)抽取2個(gè)小球,記第一次取出的小球標(biāo)號(hào)為,第二次取出的小球標(biāo)號(hào)為.
①記“”為事件,求事件的概率;
②在區(qū)間內(nèi)任取2個(gè)實(shí)數(shù),求事件“恒成立”的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知數(shù)集其中,,2,,n,,若對(duì)任意的2,,都存在,,使得下列三組向量中恰有一組共線:
向量與向量;
向量與向量;
向量與向量,則稱X具有性質(zhì)P,例如2,具有性質(zhì)P.
若3,具有性質(zhì)P,則x的取值為______
若數(shù)集3,,具有性質(zhì)P,則的最大值與最小值之積為______.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在平面直角坐標(biāo)系中,以坐標(biāo)原點(diǎn)為極點(diǎn),x軸非負(fù)半軸為極軸,建立極坐標(biāo)系,已知曲線C的極坐標(biāo)方程為:ρsin2θ﹣6cosθ=0,直線l的參數(shù)方程為: (t為參數(shù)),l與C交于P1 , P2兩點(diǎn).
(1)求曲線C的直角坐標(biāo)方程及l(fā)的普通方程;
(2)已知P0(3,0),求||P0P1|﹣|P0P2||的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖所示,在多面體中, 與均為邊長(zhǎng)為2的正方形, 為等腰直角三角形, ,且平面平面,平面平面.
(Ⅰ)求證:平面平面;
(Ⅱ)求平面與平面所成銳二面角的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)f(x)的圖象在[a,b]上連續(xù)不斷,定義:
f1(x)=min{f(t)| a≤t≤x}(x∈[a,b]),
f2(x)=max{f(t)| a≤t≤x}(x∈[a,b])。
其中,min{f(x)| x∈D}表示函數(shù)f(x)在D上的最小值,max{f(x)|x∈D}表示函數(shù)f(x)在D上的最大值。若存在最小正整數(shù)k,使得f2(x)-f1(x)≤k(x-a)對(duì)任意的x∈[a,b]成立,則稱函數(shù)f(x)為[a,b]上的“k階收縮函數(shù)”。
(1)若f(x)=sinx,x∈[, ],請(qǐng)直接寫(xiě)出f1(x),f2(x)的表達(dá)式;
(2)已知函數(shù)f(x)=(x-1)2,x∈[-1,4],試判斷f(x)是否為[-1,4]上的“k階收縮函數(shù)”,如果是,求出對(duì)應(yīng)的k;如果不是,請(qǐng)說(shuō)明理由。
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某興趣小組欲研究晝夜溫差大小與患感冒人數(shù)多少之間的關(guān)系,他們分別到氣象局與某醫(yī)院抄錄了 1至6月份每月10號(hào)的晝夜溫差情況與因患感冒而就診的人數(shù),得到如下資料:
該興趣小組確定的研究方案是:先用2、3、4、5月的4組數(shù)據(jù)求線性回歸方程,再用1月和6月的2組數(shù)據(jù)進(jìn)行檢驗(yàn).
(1)請(qǐng)根據(jù)2、3、4、5月的數(shù)據(jù),求出關(guān)于的線性回歸方程;
(2)若由線性回歸方程得到的估計(jì)數(shù)據(jù)與所選出的檢驗(yàn)數(shù)據(jù)的誤差均不超過(guò)2人,則認(rèn)為得到的線性回歸方程是理想的,試問(wèn)該小組所得線性回歸方程是否理想?
(參考公式: , )
參考數(shù)據(jù): ,
.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】定義在非零實(shí)數(shù)集上的函數(shù)滿足,且是區(qū)間上的遞增函數(shù).
(1)求的值;
(2)求證: ;
(3)解不等式.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com