已知.
(1)求的最小值及取最小值時(shí)的集合;
(2)求在時(shí)的值域;
(3)求在時(shí)的單調(diào)遞減區(qū)間.
(1)當(dāng),;(2);(3).
解析試題分析:先根據(jù)平方差公式、同角三角函數(shù)的基本關(guān)系式、二倍角公式化簡所給的函數(shù).(1)將看成整體,然后由正弦函數(shù)的最值可確定函數(shù)的最小值,并明確此時(shí)的值的集合;(2)先求出的范圍為,從而,然后可求出時(shí),函數(shù)的值域;(3)將當(dāng)成整體,由正弦函數(shù)的單調(diào)減區(qū)間中解出的取值范圍,然后對附值,取滿足的區(qū)間即可.
試題解析:化簡
4分
(1)當(dāng)時(shí),取得最小值,此時(shí)即,故此時(shí)的集合為 6分
(2)當(dāng)時(shí),所以,所以,從而即 9分
(3)由解得
當(dāng)時(shí),,而,此時(shí)應(yīng)取
當(dāng)時(shí),,而,此時(shí)應(yīng)取
故在的單調(diào)減區(qū)間為 14分.
考點(diǎn):1.三角恒等變換;2.三角函數(shù)的圖像與性質(zhì).
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知點(diǎn),是函數(shù) 圖象上的任意兩點(diǎn),且角的終邊經(jīng)過點(diǎn),若時(shí),的最小值為.
(1)求函數(shù)的解析式;
(2)求函數(shù)的單調(diào)遞增區(qū)間;
(3)當(dāng)時(shí),不等式恒成立,求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
設(shè)向量,,,函數(shù).
(1)求函數(shù)的最小正周期;
(2)在銳角中,角、、所對的邊分別為、、,,,,求的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知函數(shù)在一個(gè)周期上的系列對應(yīng)值如下表:
(1)求的表達(dá)式;
(2)若銳角的三個(gè)內(nèi)角、、所對的邊分別為、、,且滿足,,
,求邊長的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知向量a=(3sin α,cos α),b=(2sin α,5sin α-4cos α),α∈,且a⊥b.
(1)求tan α的值;
(2)求cos的值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com