【題目】已知函數(shù)=,若對于任意實數(shù),不等式恒成立,則實數(shù)的取值范圍是_________;

【答案】(0,1)

【解析】

由題意設(shè)g(x)=ex﹣e﹣x﹣2x,x∈R,則g(x)是定義域R上的奇函數(shù),且為增函數(shù);問題等價于g(x2+a)>g(﹣2ax)恒成立,得出x2+a>﹣2ax,利用判別式△<0求得實數(shù)a的取值范圍.

函數(shù)f(x)=ex﹣e﹣x﹣2x+1,x∈R;可設(shè)g(x)=ex﹣e﹣x﹣2x,x∈R;

f(x)=g(x)+1,

g(﹣x)=e﹣x﹣ex+2x=﹣(ex﹣e﹣x﹣2x)=﹣g(x),

∴g(x)是定義域R上的奇函數(shù);又g′(x)=ex+e﹣x﹣2≥0恒成立,

∴g(x)是定義域R上的增函數(shù);

∴不等式f(x2+a)+f(2ax)>2恒成立,

化為g(x2+a)+g(2ax)+2>2恒成立,

g(x2+a)>﹣g(2ax)=g(﹣2ax)恒成立,∴x2+a>﹣2ax恒成立,

x2+2ax+a>0恒成立;∴△=4a2﹣4a<0,

解得0<a<1,∴實數(shù)a的取值范圍是(0,1).

故答案為:(0,1).

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某農(nóng)科所對冬季晝夜溫差)與某反季節(jié)新品種大豆種子的發(fā)芽數(shù)(顆)之間的關(guān)系進(jìn)行分析研究,他們分別記錄了121日至125日每天的晝夜溫差與實驗室每天每100顆種子的發(fā)芽數(shù),得到的數(shù)據(jù)如下表所示:

121

122

123

124|

125

10

11

13

12

8

(顆)

23

25

30

26

16

該農(nóng)科所確定的研究方案是:先從這5組數(shù)據(jù)中選取3組求線性回歸方程,剩下的2組數(shù)據(jù)用于線性回歸方程的檢驗.

1)請根據(jù)122日至124日的數(shù)據(jù),求出關(guān)于的線性回歸方程;

2)若由線性回歸方程得到的估計數(shù)據(jù)與所選的驗證數(shù)據(jù)的誤差不超過2顆,則認(rèn)為得到的線性回歸方程是可靠的,試問(1)中所得到的線性回歸方程是否可靠?如果可靠,請預(yù)測溫差為14時種子的發(fā)芽數(shù);如果不可靠,請說明理由.

參考公式:

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】下列命題正確的是(

A.”是“”的必要不充分條件

B.對于命題,使得,則均有

C.為假命題,則,均為假命題

D.命題“若,則”的否命題為“若,則

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】中任取個數(shù),從中任取個數(shù),

1)能組成多少個沒有重復(fù)數(shù)字的四位數(shù)?

2)若將(1)中所有個位是的四位數(shù)從小到大排成一列,則第個數(shù)是多少?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知+1()在(0,+∞)內(nèi)有且只有一個零點,[﹣1,1]上的值域為

A. [﹣4,0] B. [﹣4,1] C. [﹣1,3] D. [﹣,12]

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】現(xiàn)有甲乙兩組學(xué)生,分別參加某項體能測試,所得成績的莖葉圖如圖.規(guī)定測試成績大于等于90分為優(yōu)秀,8089分為良好,6079分為合格,60分以下為不合格.

1)現(xiàn)從甲組數(shù)據(jù)中抽取一名學(xué)生的成績,有放回地抽取6次,記抽到優(yōu)秀成績的次數(shù)為X,求;

2)從甲、乙兩組學(xué)生中任取3名學(xué)生,記抽中成績優(yōu)秀的學(xué)生數(shù)為Y,求Y的概率分布與數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】中有:①若,則②若,則定為等腰三角形;③若,則定為直角三角形;④若,且該三角形有兩解,則的范圍是.以上結(jié)論中正確的個數(shù)有( )

A. 1 B. 2 C. 3 D. 4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知,對于,均有,則實數(shù)的取值范圍是(

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,一座小島距離海岸線上最近的點P的距離是3 km,從點P沿海岸正東12 km處有一個漁村.

1)假設(shè)一個人駕駛的小船的平均速度為,步行的速度是.y(單位:h)表示他從小島到漁村的時間,x(單位:km)表示此人將船停在海岸處AP點的距離.請將y表示為x的函數(shù),并寫出定義域;

2)在(1)的條件下,是否有一個停船的位置使得從小島到漁村花費的時間最少?說明理由.

查看答案和解析>>

同步練習(xí)冊答案