4.計(jì)算:($\sqrt{3}$-2)0-log2$\sqrt{2}$=$\frac{1}{2}$.

分析 根據(jù)指數(shù)冪和對數(shù)的運(yùn)算性質(zhì)計(jì)算即可

解答 解:原式=1-$\frac{1}{2}$=$\frac{1}{2}$,
故答案為:$\frac{1}{2}$

點(diǎn)評(píng) 本題考查了指數(shù)冪和對數(shù)的運(yùn)算性質(zhì),屬于基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.若△ABC的內(nèi)角A,B,C所對的邊分別為a,b,c,已知2bsin2A=3asinB,且c=2b,則$\frac{a}$等于(  )
A.$\frac{\sqrt{2}}{2}$B.$\frac{\sqrt{3}}{3}$C.$\sqrt{2}$D.$\sqrt{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

15.等差數(shù)列{an}中,S3=$\frac{3}{5}$,S5=$\frac{5}{3}$,則S8=$\frac{64}{15}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

12.已知拋物線C:y2=2px(p>0)的焦點(diǎn)為F,直線y=2與y的軸的交點(diǎn)為P,與C的交點(diǎn)為Q,且|QF|=2|PQ|.
(1)求C的方程;
(2)邊焦點(diǎn)F的直線l斜率為-1,判斷C上是否存在兩點(diǎn)M,N,使得M,N關(guān)于直線l對稱,若存在,求出|MN|,若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.若冪函數(shù)f(x)=(m2-m-1)x1-m是偶函數(shù),則實(shí)數(shù)m=( 。
A.-1B.2C.3D.-1或2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

9.求滿足下列條件的直線方程:
(1)求經(jīng)過直線l1:x+3y-3=0和l2:x-y+1=0的交點(diǎn),且平行于直線2x+y-3=0的直線l的方程;
(2)已知直線l1:2x+y-6=0和點(diǎn)A(1,-1),過點(diǎn)A作直線l與l1相交于點(diǎn)B,且|AB|=5,求直線l的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.已知橢圓Γ:$\frac{{x}^{2}}{4}$+y2=1的左頂點(diǎn)為R,點(diǎn)A(2,1),B(-2,1),O為坐標(biāo)原點(diǎn).
(I)若P是橢圓Γ上任意一點(diǎn),$\overrightarrow{OP}$=m$\overrightarrow{OA}$+n$\overrightarrow{OB}$,求m2+n2的值;
(II)設(shè)Q是橢圓Γ上任意一點(diǎn),S(6,0),求$\overrightarrow{QS}$•$\overrightarrow{QR}$的取值范圍;
(Ⅲ)設(shè)M(x1,y1),N(x2,y2)是橢圓Γ上的兩個(gè)動(dòng)點(diǎn),滿足kOM•kON=kOA•kOB,試探究△OMN的面積是否為定值,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.如圖,在三棱錐P-ABC中,AB⊥BC,AB=BC=PA=a,點(diǎn)O、D分別是AC、PC的中點(diǎn),OP⊥底面ABC.
(1)求證:PA∥平面BOD.
(2)求異面直線PA與BD所成角余弦值的大。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.已知函數(shù)f(x)=$\left\{\begin{array}{l}{1+\frac{1}{x}(x>1)}\\{{x}^{2}+1(-1≤x≤1)}\\{2x+3(x<-1)}\end{array}\right.$.
(1)求f{f[f(-2)]}的值;
(2)若f(a)=$\frac{3}{2}$,求a的值.

查看答案和解析>>

同步練習(xí)冊答案