3.某產(chǎn)品的廣告費用x與銷售額y的統(tǒng)計數(shù)據(jù)如表:根據(jù)下表可得到回歸方程$\widehat{y}$=bx+a中的b=10.6,據(jù)此模型預(yù)告廣告費用為10萬元時的銷售額為(  )
廣告費用x(萬元)2345
銷售額y(萬元)26394958
A.111.9萬元B.112.1萬元C.113.7萬元D.113.9萬元

分析 求出所給數(shù)據(jù)的平均數(shù),得到樣本中心點,根據(jù)線性回歸直線過樣本中心點,求出方程中的一個系數(shù),得到線性回歸方程,把自變量為10代入,預(yù)報出結(jié)果.

解答 解:∵$\overline{x}$=3.5,$\overline{y}$=43,回歸方程$\widehat{y}$=bx+a中的b=10.6,
∴43=10.6×3.5+a,
∴a=5.9,
∴線性回歸方程是y=10.6x+5.9,
∴廣告費用為10萬元時銷售額為10.6×10+5.9=111.9萬元,
故選:A.

點評 本題考查線性回歸方程的求法和應(yīng)用,是一個基礎(chǔ)題,本題解答關(guān)鍵是利用線性回歸直線必定經(jīng)過樣本中心點.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

15.已知函數(shù)f(x)=$\frac{e^x-e^{-x}}{e^x+e^{-x}}$(x∈R),e是自然對數(shù)的底.
(1)計算f(ln2)的值;
(2)證明函數(shù)f(x)是奇函數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

16.設(shè)M,N分別為雙曲線x2-$\frac{{y}^{2}}{9}$=1的左右焦點,若P在雙曲線上,且$\overrightarrow{PM}•\overrightarrow{PN}$=0,則|$\overrightarrow{PM}$|+|$\overrightarrow{PN}$|=$2\sqrt{19}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

11.函數(shù)y=sin(x+$\frac{π}{3}$)的單調(diào)減區(qū)間是[$\frac{π}{6}$+2kπ,$\frac{7π}{6}$+2kπ],k∈Z.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.直線l:(k+1)x-ky-1=0(k∈R)與圓C:x2+(y-1)2=1的位置關(guān)系是( 。
A.相交B.相切C.相離D.相交或相切

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.已知圓C:x2+y2=4,直線l:y=-x+b,圓C上恰有3個點到直線l的距離為1,則b=( 。
A.$±\sqrt{2}$B.$\sqrt{2}$C.-$\sqrt{2}$D.以上答案都不對

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.已知雙曲線$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{^{2}}$=1(a>0,b>0)的一條漸近線方程是y=$\frac{\sqrt{5}}{2}$x,則該雙曲線的離心率等于( 。
A.$\frac{3\sqrt{14}}{14}$B.$\frac{3\sqrt{2}}{4}$C.$\frac{3}{2}$D.$\frac{4}{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

12.i4n+i4n+1+i4n+2+i4n+3=0(n為正整數(shù)).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

13.在△ABC中,B=120°,AB=$\sqrt{2}$,AC=$\sqrt{6}$,則A的角平分線AD,則AD=$\sqrt{3}$.

查看答案和解析>>

同步練習(xí)冊答案